In a triangle $ABC$, the angle bisector of $A$ and the cevians $BD$ and $CE$ concur at a point $P$ inside the triangle. Show that the quadrilateral $ADPE$ has an incircle if and only if $AB=AC$.
Problem
Source: Central American Olympiad 2007, Problem 2
Tags: geometry, symmetry, angle bisector
12.06.2007 09:26
19.12.2007 16:25
suppose that $ (AP)$ meet $ BC$ at $ Q$. $ \bullet :$ if $ ADPE$ has an incircle . we have $ \widehat{APE}=\widehat{APD}$ so $ \widehat{APB}=\widehat{APE}+\widehat{EPB}=\widehat{APD}+\widehat{DPC}=\widehat{APC}$ and $ \widehat{PAB}=\widehat{PAC}=\frac{\widehat{A}}{2}$ so $ \widehat{PBE}=\widehat{PCD}$ so $ \triangle PEB \sim \triangle PDC$ $ \Longrightarrow \frac{CD}{BE}=\frac{PD}{PE} (\star) .$ in other hand $ \frac{BP}{PD}=\frac{AB}{AD}$ and $ \frac{PE}{PC}=\frac{AE}{AC}$ but since $ \frac{BP}{PC}=\frac{BQ}{QC}=\frac{AB}{AC}$, we have $ \frac{PE}{PD}=\frac{AE}{AD} (\star \star) .$ and by ceva theorem's $ 1=\frac{BQ}{QC}\frac{DC}{AD}\frac{AE}{EB}=\frac{AB}{AC}\frac{DC}{AD}\frac{AE}{EB}$ and with $ (\star )$ and $ (\star \star)$ we have $ AB=AC$. $ \bullet:$if$ AB=AC$ then $ 1=\frac{BQ}{QC}\frac{DC}{AD}\frac{AE}{EB}=\frac{AB}{AC}\frac{DC}{AD}\frac{AE}{EB}$ $ \Longrightarrow \frac{DC}{AD}=\frac{BE}{EA}$ $ \Longrightarrow \frac{AC-AD}{AD}=\frac{AB-EB}{EA}$ $ \Longrightarrow AD=AE$ and $ AP=AP$ and $ \widehat{PAE}=\widehat{PAD}$ so $ PE =PD$ and in this case $ AD+EP=AE+PD$ so $ ADPE$ has an incircle .