There are given the integers $1 \le m < n$. Consider the set $M = \{ (x,y);x,y \in \mathbb{Z_{+}}, 1 \le x,y \le n \}$. Determine the least value $v(m,n)$ with the property that for every subset $P \subseteq M$ with $|P| = v(m,n)$ there exist $m+1$ elements $A_{i}= (x_{i},y_{i}) \in P, i = 1,2,...,m+1$, for which the $x_{i}$ are all distinct, and $y_{i}$ are also all distinct.
Problem
Source: Romanian JBTST VI 2007, problem 2
Tags: analytic geometry, combinatorics proposed, combinatorics