Let ${\omega}$ be the circumcircle of an acute-angled triangle ${ABC}$. Point ${D}$ lies on the arc ${BC}$ of ${\omega}$ not containing point ${A}$. Point ${E}$ lies in the interior of the triangle ${ABC}$, does not lie on the line ${AD}$, and satisfies ${\angle DBE =\angle ACB}$ and ${\angle DCE = \angle ABC}$. Let ${F}$ be a point on the line ${AD}$ such that lines ${EF}$ and ${BC}$ are parallel, and let ${G}$ be a point on ${\omega}$ different from ${A}$ such that ${AF = FG}$. Prove that points ${D,E, F,G}$ lie on one circle. (Slovakia)
Problem
Source: Czech-Polish-Slovak Match 2017 day 1 P2
Tags: Concyclic, equal angles, geometry, circle