Problem

Source:

Tags: geometry, circles



Let $C_1$ and $C_2$ be two different circles , and let their radii be $r_1$ and $r_2$ , the two circles are passing through the two points $A$ and $B$ (i)Let $P_1$ on $C_1$ and $P_2$ on $C_2$ such that the line $P_1P_2$ passes through $A$. Prove that $P_1B \cdot r_2 = P_2B \cdot r_1$ (ii)Let $DEF$ be a triangle that it's inscribed in $C_1$ , and let $D'E'F'$ be a triangle that is inscribed in $C_2$ . The lines $EE'$,$DD'$ and $FF'$ all pass through $A$ . Prove that the triangles $DEF$ and $D'E'F'$ are similar (iii)The circle $C_3$ also passes through $A$ and $B$ . Let $l$ be a line that passes through $A$ and cuts circles $C_i$ in $M_i$ with $i = 1,2,3$ . Prove that the value of$$\frac{M_1M_2}{M_1M_3}$$is constant regardless of the position of $l$ Provided that $l$ is different from $AB$