Let ${A}$ be a finite collection of squares in the coordinate plane such that the vertices of all squares that belong to ${A}$ are ${(m, n), (m + 1, n), (m, n + 1)}$, and ${(m + 1, n + 1)}$ for some integers ${m}$ and ${n}$. Show that there exists a subcollection ${B}$ of ${A}$ such that ${B}$ contains at least ${25 \% }$ of the squares in ${A}$, but no two of the squares in ${B}$ have a common vertex.
Problem
Source: Nordic Mathematical Contest 2001 #1
Tags: Integer, coordinates, combinatorial geometry, analytic geometry, combinatorics