Problem

Source: Nordic Mathematical Contest 2013 #3

Tags: Sequence, rational, number theory



Define a sequence ${(n_k)_{k\ge 0}}$ by ${n_{0 }= n_{1} = 1}$, and ${n_{2k} = n_k + n_{k-1} }$ and ${n_{2k+1} = n_k}$ for ${k \ge 1}$. Let further ${q_k = n_k }$ / ${ n_{k-1} }$ for each ${k \ge 1}$. Show that every positive rational number is present exactly once in the sequence ${(q_k)_{k\ge 1}}$