Problem

Source: MEMO 2017 T2

Tags: algebra, inequalities



Determine the smallest possible real constant $C$ such that the inequality $$|x^3 + y^3 + z^3 + 1| \leq C|x^5 + y^5 + z^5 + 1|$$holds for all real numbers $x, y, z$ satisfying $x + y + z = -1$.