For n real numbers $a_{1},\, a_{2},\, \ldots\, , a_{n},$ let $d$ denote the difference between the greatest and smallest of them and $S = \sum_{i<j}\left |a_i-a_j \right|.$ Prove that \[(n-1)d\le S\le\frac{n^{2}}{4}d\] and find when each equality holds.
Problem
Source: 21-st Iberoamerican Mathematical Olympiad
Tags: inequalities, inequalities unsolved
06.05.2007 12:16
Not totally sure, but this might be a solution.
23.08.2007 07:00
1) WLOG $ a_{1}\leq a_{2}\leq ... a_{n}$ $ \left |a_{i}-a_{1}\right|+\left |a_{n}-a_{i}\right| =a_{n}-a_{1}=d$ $ S =\sum_{i < j\not\in\left\{1,n\right\}}\left |ai-aj\right|.+\sum (|a_{i}-a_{1}|+|a_{n}-a_{i}|)+a_{n}-a_{1}=$ $ (n-1)d+\sum_{i < j\not\in\left\{1,n\right\}}\left |ai-aj\right|\geq (n-1)d$ and the equality holds when $ a_{2}=a_{3}=...=a_{n-1}$ 2) If $ i\leq\frac{n}{2}$ and $ a_{i-1}=a_{1}$: $ \sum |a_{i}-a_{j}|\leq\sum |a_{1}-a_{j}|$ If $ i\geq\frac{n+2}{2}$ and $ a_{i+1}=a_{n}$: $ \sum |a_{i}-a_{j}|\geq\sum |a_{n}-a_{j}|$ with this smoothing you have that the equality holds when $ a_{1}=a_{2}=...=a_{\frac{n}{2}}$ y $ a_{\frac{n+2}{2}}=...=a_{n}$, and evidently doesn't hold for $ n$ odd.
23.08.2007 18:02
Suppose WLOG that $ a_{1}\leq ...\leq a_{n}$. Then $ S=(n-1)(a_{n}-a_{1})+\sum_{i=2}^{[n/2]}(n+1-2i)(a_{n+1-i}-a_{i})$. Hence, 1) $ (n-1)d\leq (n-1)d+\sum_{i=2}^{[n/2]}(n+1-2i)(a_{n+1-i}-a_{i})=S$, and 2) $ S\leq (n-1)d+\sum_{i=2}^{[n/2]}(n+1-2i)d\leq\frac{n^{4}}{4}d$.
04.01.2016 08:34
Sorry for reviving , but doesn't the fact that $S$ is convex in each of $a_i$'s give an easier solution?
28.10.2018 17:30
It does only for searching maximum. With order $a_1\le a_2\le...\le a_n$ it suffices to prove this inequality for all $k=0,1,...,n$ where $a_1=...=a_k\wedge a_{k+1}=...=a_n$