Problem

Source:

Tags: geometry, barycentric coordinates, Balkan, symmedian, Balkan Mathematics Olympiad



Consider an acute-angled triangle $ABC$ with $AB<AC$ and let $\omega$ be its circumscribed circle. Let $t_B$ and $t_C$ be the tangents to the circle $\omega$ at points $B$ and $C$, respectively, and let $L$ be their intersection. The straight line passing through the point $B$ and parallel to $AC$ intersects $t_C$ in point $D$. The straight line passing through the point $C$ and parallel to $AB$ intersects $t_B$ in point $E$. The circumcircle of the triangle $BDC$ intersects $AC$ in $T$, where $T$ is located between $A$ and $C$. The circumcircle of the triangle $BEC$ intersects the line $AB$ (or its extension) in $S$, where $B$ is located between $S$ and $A$. Prove that $ST$, $AL$, and $BC$ are concurrent. $\text{Vangelis Psychas and Silouanos Brazitikos}$