Let $u$ be the positive root of the equation $x^2+x-4=0$. The polynomial $$P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_0$$where $n$ is positive integer has non-negative integer coefficients and $P(u)=2017$. 1) Prove that $a_0+a_1+...+a_n\equiv 1\mod 2$. 2) Find the minimum possible value of $a_0+a_1+...+a_n$.
Problem
Source: 2017 Greece National Olympiad Problem 4
Tags: polynomial, algebra
02.05.2017 18:11
1) Since $u$ is root of the function $P(x)=2017$ hence $x^{2}+x-4|P(x)-2017$ because $x^{2}+x-4$ is the polynomial with minimized degree has the irrational root $u$ and $P(x)$ is an integer polynomial. We obtain $-2|P(1)-2017$. Q.E.D
06.05.2017 14:07
Bump! What about 2) ?
07.05.2017 21:25
(2) $$P(x)=Q(x).(x^2+x-4)+2017$$ $$Q(x)=b_{n-2}.x^{n-2}+b_{n-3}x^{n-3}+\ldots+b_1x+b_0$$with the coefficients of $Q(x)$ are: $$b_0=504$$$$b_1=126$$$$\ldots$$$$b_k=\bigg[\dfrac{b_{k-1}+b_{k-2}}{4}\bigg] $$$$\ldots$$$$b_{n-2}=\bigg[\dfrac{b_{n-3}+b_{n-4}}{4}\bigg]$$with $(k=2,...,n-2)$ We found that $b_{13}=0$, so: $$Q(x)=x^{12}+2x^{11}+3x^{10}+5x^9+8x^8+13x^7+21x^6+31x^5+56x^4+70x^3+157x^2+126x+504$$$\Rightarrow$ $P(1)_{min}=Q(1).-2+2017=997.-2+2017=23$. I thinks so
27.05.2017 18:14
hieudg wrote: (2) $$P(x)=Q(x).(x^2+x-4)+2017$$ $$Q(x)=b_{n-2}.x^{n-2}+b_{n-3}x^{n-3}+\ldots+b_1x+b_0$$with the coefficients of $Q(x)$ are: $$b_0=504$$$$b_1=126$$$$\ldots$$$$b_k=\bigg[\dfrac{b_{k-1}+b_{k-2}}{4}\bigg] $$$$\ldots$$$$b_{n-2}=\bigg[\dfrac{b_{n-3}+b_{n-4}}{4}\bigg]$$with $(k=2,...,n-2)$ We found that $b_{13}=0$, so: $$Q(x)=x^{12}+2x^{11}+3x^{10}+5x^9+8x^8+13x^7+21x^6+31x^5+56x^4+70x^3+157x^2+126x+504$$$\Rightarrow$ $P(1)_{min}=Q(1).-2+2017=997.-2+2017=23$. I thinks so You do that means $a1=a2=...=an=1$ but how you know that???
11.08.2017 17:38
hieudg wrote: (2) $$P(x)=Q(x).(x^2+x-4)+2017$$ $$Q(x)=b_{n-2}.x^{n-2}+b_{n-3}x^{n-3}+\ldots+b_1x+b_0$$with the coefficients of $Q(x)$ are: $$b_0=504$$$$b_1=126$$$$\ldots$$$$b_k=\bigg[\dfrac{b_{k-1}+b_{k-2}}{4}\bigg] $$$$\ldots$$ How can you get $b_k$ like this?
20.12.2017 15:11
Some one please give a solution to this question
10.03.2018 16:22