Problem

Source: EGMO 2017 P5

Tags: number theory, equation, EGMO, EGMO 2017



Let $n\geq2$ be an integer. An $n$-tuple $(a_1,a_2,\dots,a_n)$ of not necessarily different positive integers is expensive if there exists a positive integer $k$ such that $$(a_1+a_2)(a_2+a_3)\dots(a_{n-1}+a_n)(a_n+a_1)=2^{2k-1}.$$a) Find all integers $n\geq2$ for which there exists an expensive $n$-tuple. b) Prove that for every odd positive integer $m$ there exists an integer $n\geq2$ such that $m$ belongs to an expensive $n$-tuple. There are exactly $n$ factors in the product on the left hand side.