Let $x; y$ and $z$ be positive real numbers such that $\sqrt{x}+\sqrt{y}+\sqrt{z}= 1$. Prove that $\frac{x^{2}+yz}{\sqrt{2x^{2}(y+z)}}+\frac{y^{2}+zx}{\sqrt{2y^{2}(z+x)}}+\frac{z^{2}+xy}{\sqrt{2z^{2}(x+y)}}\geq 1.$
Problem
Source: APMO 2007
Tags: inequalities
31.03.2007 08:55
In APMO, I solved this problem by following way. $\sum_{cyc}\frac{x^{2}+yz}{\sqrt{2x^{2}(y+z)}}=\sum_{cyc}\frac{(x-y)(x-z)}{\sqrt{2x^{2}(y+z)}}+\sum_{cyc}\sqrt{\frac{y+z}{2}}$. But $\sum_{cyc}\sqrt{\frac{y+z}{2}}\ge \sum_{cyc}\frac{\sqrt{y}+\sqrt{z}}{2}=1$, WTS : $\sum_{cyc}\frac{(x-y)(x-z)}{\sqrt{2x^{2}(y+z)}}\ge0$ WLOG $x\ge y\ge z$ -> $\frac{1}{y\sqrt{z+x}}\le \frac{1}{z\sqrt{x+y}}$. Done.
31.03.2007 12:17
$x,y,z$ are positive reals such that $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ then \[sum_{\substack{cyc}}\frac{x^{2}+yz}{\sqrt{2x^{2}(y+z)}}=\sum_{\substack{cyc}}\frac{x}{\sqrt{2(y+z)}}+\sum_{\substack{cyc}}\frac{yz}{x\sqrt{2(y+z)}}\] now we have : lemma 1:$\sum_{\substack{}}\frac{x}{\sqrt{2(y+z)}}\ge\frac{1}{2}.$ proof:we apply jensen to get above cyclic sum as \[\ge \sqrt{\frac{(x+z+y)^{3}}{4(xy+zx+zy)}}\ge \frac{\sqrt{3}}{2}.\sqrt{x+y+z}\ge 1/2 \] \[as\ x+y+z \ge 1/3.(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2}=1/3 \ and\ (x+z+y)^{2}\ge 3(xz+zy+xy) \] now lemma 2:$\sum_{\substack{sym}}\frac{yz}{x\sqrt{2(y+z)}}\ge 1/2$ proof : again applying jensen we have above cyclic expression as \[\ge \frac{1}{xyz}.\sqrt{\frac{(x^{2}z^{2}+x^{2}y^{2}+y^{2}z^{2})^{3}}{2.\sum_{\substack{sym}}x^{3}y^{2}}}\ge \frac{\sqrt{3(x+z+y)}}{2}\] $iff \sum_{\substack{sym}}x^{6}y^{6}+6\sum_{\substack{sym}}x^{6}y^{4}z^{2}+12x^{4}y^{4}z^{4}\ge 3\sum_{\substack{sym}}x^{6}y^{4}z^{2}+3\sum_{\substack{sym}}x^{5}y^{5}z^{2}+3\sum_{\substack{sym}}x^{5}y^{4}z^{3}$ from schur inequality \[\sum_{\substack{sym}}x^{6}y^{6}+6x^{4}y^{4}z^{4}\ge 2\sum_{\substack{sym}}x^{6}y^{4}z^{2}\] so we have to prove $3(\sum_{\substack{sym}}x^{6}y^{4}z^{2}-x^{5}y^{5}z^{2})+2(\sum_{\substack{sym}}x^{6}y^{4}z^{2}+1/2(x^{4}z^{4}y^{4}))-3\sum_{\substack{sym}}x^{5}y^{4}z^{3}\ge 0$by AM-GM and MUIRHEAD inequality adding two lemmas we have the result.
07.04.2007 01:46
i made a different solution... it's key is... faith from the condition and AM-GM we have that $\sum_{cyc}\frac{x^{2}+yz}{\sqrt{2x^{2}(y+z)}}=\sum_{cyc}\frac{x^{2}+yz}{x(\sqrt{2x(y+z)}+\sqrt{2y(y+z)}+\sqrt{2z(y+z)})}\geq \sum_{cyc}\frac{2(x^{2}+yz)}{x(2x+5y+5z)}$... the rest is plain muirhead. after clearing the denominators, it's exagerated how so much terms cancell and the thing to prove at last falls so easy from muirhead...
08.04.2007 04:48
Note that by Chebyshev, $\sum \frac{2yz-xy-xz}{\sqrt{2x^{2}(y+z)}}\ge 0$ $\sum \frac{2x^{2}+2yz-2x^{2}-xy-xz}{\sqrt{2x^{2}(y+z)}}\ge 0$ $\sum \frac{2x^{2}+2yz-2\sqrt{2x^{3}(y+z)}}{\sqrt{2x^{2}(y+z)}}\ge 0$ $\sum \frac{x^{2}+yz}{\sqrt{2x^{2}(y+z)}}\ge \sum \sqrt{x}= 1$.
19.11.2010 14:08
Here is my solution Letr $x=a^{2},y=b^{2},z=c^{2}$ $\implies$ $a+b+c=1$ $\sum\frac{a^{4}+b^{2}c^{2}}{a\sqrt{2a^{2}(b^{2}+c^{2})}}\geq 1$ from Cauchy $\sum\frac{a^{4}+b^{2}c^{2}}{a\sqrt{2a^{2}(b^{2}+c^{2})}}\sum{a^{2}\sqrt{2a^{2}(b^{2}+c^{2})}}\geq (\sum\sqrt{a^{4}+b^{2}c^{2}})^{2}$ $a^4+b^4+c^4+a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2}+ 2\sum \sqrt{(a^{4}+b^{2}c^{2})(b^{4}+c^{2}a^{2})}\geq \sum{a\sqrt{2a^{2}(b^{2}+c^{2})}}$ from AM-GM $\sqrt{2a^{2}(b^{2}+c^{2})}\leq a^{2}+\frac{b^{2}+c^{2}}{2}$ $\implies$ $\sum{a\sqrt{2a^{2}(b^{2}+c^{2})}}\leq (\sum a^{3})+ \frac{[2,1,0]}{2}=\frac{[3,0,0]+[2,1,0]}{2}$ $\frac{[3,0,0]+[2,1,0]}{2}=\frac{[3,0,0][1,0,0]+[2,1,0][1,0,0]}{4}=\frac{[4,0,0]}{2}+ \frac{3[3,1,0]}{2}+\frac{[2,1,1]+[2,2,0]}{2}$ $2\sum \sqrt{(a^{4}+b^{2}c^{2})(b^{4}+c^{2}a^{2})} \geq 2[3,1,0]$ (Cauchy) $a^4+b^4+c^4+a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2}+ 2\sum \sqrt{(a^{4}+b^{2}c^{2})(b^{4}+c^{2}a^{2})}\geq 2[3,1,0]+\frac{[4,0,0]+[2,2,0]}{2}$ $2[3,1,0]+\frac{[4,0,0]+[2,2,0]}{2}\geq\frac{[4,0,0]}{2}+ \frac{3[3,1,0]}{2}+\frac{[2,1,1]+[2,2,0]}{2}$ this is equivalent to $[3,1,0]\geq [2,1,1]$ which is obvious Q.E.D
20.04.2012 03:00
We have \[ \begin {align*} \sum \frac {x^2 + yz} {\sqrt {2x^2 (y + z)}} = \sum \frac {x^2 + yz} {x(y + z)} \cdot \sqrt {\frac {y + z} {2}} \ge \sum \frac {x^2 + yz} {x(y + z)} \left (\frac {\sqrt y + \sqrt z} {2} \right) \end {align*} \] Now \[ \begin {align*} \sum \frac {x^2 + yz} {x(y + z)} \left (\frac {\sqrt y + \sqrt z} {2} \right) &\ge 1 \iff\\ \sum \frac {(x + y) (x + z)} {x (y + z)} \left (\frac {\sqrt y + \sqrt z} {2}\right) & \ge 2 \iff \\ \sum \frac {\sqrt y} {2} \left (\frac {(x + y)(x + z)} {x(y + z)} + \frac {(z + y) (z + x)} {z (x + y)}\right) & \ge 2 \end {align*} \] From AM-GM, \[ \begin {align*} \frac {\sqrt y} {2} \left (\frac {(x + y)(x + z)} {x(y + z)} + \frac {(z + y) (z + x)} {z (x + y)}\right) \ge (x + z) \sqrt \frac {y} {xz} \ge 2 \sqrt y \end {align*} \] Summing cyclically gives us the desired result.
06.06.2012 20:13
07.06.2012 07:23
I did same as Little Gauss
04.11.2023 19:17
I have a generalization for this in cases of : $$n=3$$
04.11.2023 19:18
Gen1 was here