We show by induction on $n$ that if there exists at least one triple $(t_i, t_j, t_k)$ that are not the sides of a triangle, then $$n^2+1 \leq (t_1+t_2+\cdots+t_n)\left( \frac{1}{t_1}+\frac{1}{t_2}+\cdots+\frac{1}{t_n} \right).$$$\text{Base Case: }$ For $n=3,$ we must show that if $t_1, t_2, t_3$ cannot be the sides of a triangle, then $$10 \leq (t_1+t_2+t_3)\left( \frac{1}{t_1}+\frac{1}{t_2}+\frac{1}{t_3} \right).$$WLOG, assume that $t_1 \leq t_2 \leq t_3,$ then we have that $t_3 > t_1+t_2.$ Also, because our inequality is homogenous, assume that $t_3=1.$ Letting $x=t_1+t_2,$ it suffices to show that $$7 \leq \frac{t_1}{t_2}+\frac{t_2}{t_1}+x+\frac{1}{t_1}+\frac{1}{t_2}.$$But by AM-GM, $\frac{t_1}{t_2}+\frac{t_2}{t_1} \geq 2,$ so it suffices to show that $$x+\frac{1}{t_1}+\frac{1}{t_2} \geq 5.$$But, $x \leq t_3=1 \implies (x-1)(x-4) \geq 0 \implies 5 \leq x+\frac{4}{x} \leq x+\frac{1}{t_1t_2} \leq x+\frac{1}{t_1}+\frac{1}{t_2}$ by $2$ applications of AM-GM at the end. Therefore, our base case is proven.
$\text{Inductive Step: }$ Now, assume that for $n=k-1 \geq 3$ our proposition holds. Consider the sequence $t_1, t_2, \cdots t_k$ of positive real numbers. Then if there is at least one triple, say WLOG $(t_1, t_2, t_3),$ which are not the sides of a triangle then we have by our inductive hypothesis that
\begin{align*}
(t_1+t_2+\cdots+t_k)\left( \frac{1}{t_1}+\frac{1}{t_2}+\cdots+\frac{1}{t_k} \right) &=(t_1+t_2+\cdots+t_{k-1})\left( \frac{1}{t_1}+\frac{1}{t_2}+\cdots+\frac{1}{t_{k-1}} \right) + \sum_{i=1}^{k-1} \left( \frac{t_i}{t_k}+\frac{t_k}{t_i} \right)+1 \\
&\geq \left((k-1)^2+1\right)+(k-1)\cdot 2+1 \text{ by AM-GM} \\
&= k^2+1.
\end{align*}Therefore, our induction is complete. QED
Now, for the sake of a contradiction assume that there exists $t_i, t_j, t_k$ which are not the sides of a triangle, and $$n^2+1 > (t_1+t_2+\cdots+t_n)\left( \frac{1}{t_1}+\frac{1}{t_2}+\cdots+\frac{1}{t_n} \right).$$But by our induction above, we have that $$n^2+1 \leq (t_1+t_2+\cdots+t_n)\left( \frac{1}{t_1}+\frac{1}{t_2}+\cdots+\frac{1}{t_n} \right),$$a contradiction. Therefore, all $t_i, t_j, t_k$ are the sides of a triangle. QED