Problem

Source: Irish Math Olympiad 2014 Q2

Tags: number theory, number theory unsolved, Divisibility, induction



Prove that for $N>1$ that $(N^{2})^{2014} - (N^{11})^{106}$ is divisible by $N^6 + N^3 +1$ Is this just a proof by induction or is there a more elegant method? I don't think calculating $N = 2$ was expected.