Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\cup B)+f(A\cap B)\leq f(A)+f(B)$; $(2)$ For any $A\subset B\subset S$, $f(A)\leq f(B)$; $(3)$ For any $k,j\in S$,$$f(\{1,2,\ldots,k+1\})\geq f(\{1,2,\ldots,k\}\cup \{j\});$$$(4)$ For the empty set $\varnothing$, $f(\varnothing)=0$. Confirm that for any three-element subset $T$ of $S$,the inequality $$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$holds.
Problem
Source: 2017 China TSTST 1 Day 1 Problem 3
Tags: set theory, Subsets, combinatorics, inequalities, algebra
08.03.2017 10:26
This problem is wrong.
08.03.2017 16:48
HuangZhen wrote: Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\bigcup B)+f(A\bigcap B)\leq f(A)+f(B);$ $(2)$ For any $A\subset B\subset S$,$f(A)\leq f(B);$ $(3)$ For any $k,j\in S$,$$f(\{1,2,...,k+1\})\geq f(\{1,2,...,k\}\bigcup \{j\});$$$(4)$ For empty set $\varnothing$,$f(\varnothing)=0;$ Confirm that for any three-element subset $T$ of $S$,the inequality below holds.$$f(T)\leq \frac{27}{19}f({1,2,3})$$ $$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$
08.03.2017 18:12
It is said that this problem is a wrong one with no solutions.And many thanks to sqing for pointing out my typing mistake.
09.03.2017 08:28
HuangZhen wrote: It is said that this problem is a wrong one with no solutions.And many thanks to sqing for pointing out my typing mistake. you are welcome .
11.03.2017 11:56
HuangZhen wrote: Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\bigcup B)+f(A\bigcap B)\leq f(A)+f(B);$ $(2)$ For any $A\subset B\subset S$,$f(A)\leq f(B);$ $(3)$ For any $k,j\in S$,$$f(\{1,2,...,k+1\})\geq f(\{1,2,...,k\}\bigcup \{j\});$$$(4)$ For empty set $\varnothing$,$f(\varnothing)=0;$ Confirm that for any three-element subset $T$ of $S$,the inequality below holds.$$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$ Is the number $ \frac{27}{19} $ wrong?
12.03.2017 07:59
Nah, the corrected version is HuangZhen wrote: Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\bigcup B)+f(A\bigcap B)\leq f(A)+f(B);$ $(2)$ For any $A\subset B\subset S$,$f(A)\leq f(B);$ $(3)$ For any $k,j\in S$,$$f(\{1,2,...,k\})\geq f((\{1,2,...,k\}- \{k\})\bigcup \{j\});$$$(4)$ For empty set $\varnothing$,$f(\varnothing)=0;$ Confirm that for any three-element subset $T$ of $S$,the inequality below holds.$$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$ And for general $|T|=m$, $f(T)\le \frac{m^m}{m^m-(m-1)^{m-1}} f(\{1,2,...,m\})$.
12.03.2017 08:10
smy2012 wrote: And for general $|T|=m$, $f(T)\le \frac{m^m}{m^m-(m-1)^{m}} f(\{1,2,...,m\})$. Isn't this right?
14.03.2017 09:08
smy2012 wrote: Nah, the corrected version is HuangZhen wrote: Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\bigcup B)+f(A\bigcap B)\leq f(A)+f(B);$ $(2)$ For any $A\subset B\subset S$,$f(A)\leq f(B);$ $(3)$ For any $k,j\in S$,$$f(\{1,2,...,k\})\geq f((\{1,2,...,k\}- \{k\})\bigcup \{j\});$$$(4)$ For empty set $\varnothing$,$f(\varnothing)=0;$ Confirm that for any three-element subset $T$ of $S$,the inequality below holds.$$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$ And for general $|T|=m$, $f(T)\le \frac{m^m}{m^m-(m-1)^{m-1}} f(\{1,2,...,m\})$. How to prove it?
18.03.2017 07:21
We define $f(x_0;x_0;...;x_0;x_1;x_2;...;x_n)=f(x_0;x_1;...;x_n)$ with $x_0;x_1;...;x_n$ are the elements of $S$ $\forall a,b,c\in S$, we have : $\frac{5}{3}f(a;b;c)$$\leq$$f(a;b;c)+\frac{2}{3}(f(a)+f(b)+f(c))$ $\leq f(a;b;c)+2f(1)$$\leq f(1;a;b;c)+2f(1)$$\leq f(1;a)+f(1;b;c)+f(1)$ $\leq f(1;a)+f(1;b)+f(1;c)\leq 3f(1;2)$ Then, $\frac{19}{9}f(a;b;c)$$\leq f(a;b;c)+2f(1;2)$$\leq f(1;2;a;b;c)+2f(1;2)$ $\leq f(1;2;a)+f(1;2;b;c)+f(1;2)$$\leq f(1;2;a)+f(1;2;b)+f(1;2;c)$ $\leq 3f(1;2;3)$$\Rightarrow f(a;b;c)\leq \frac{27}{19}f(1;2;3)$
03.04.2017 16:35
f(a)<=f(1) why?
16.11.2017 20:14
So why RiJongYong wrote: f(a)<=f(1) why?
31.01.2019 09:26
It was said that during the test, the condition$(4) f(\varnothing)=0$ was omitted due to some printing problem, and the committee failed to notify the contestants in time. Consequently, anyone who successfully constructed a counterexample without $(4)$ was given full points, and those who added $(4)$ and solved the modified problem also got full mark. However, many failed to find that the problem was wrong and got nothing right after wasting several hours on it. The accident might have affected the national team's namelist, some people would say. Then, this version on AoPS has been corrected.
25.03.2020 22:09
The following sequence of inequalities proves the statement for an arbitrary triple $(abc)$. $$3f(123)\ge f(12a)+f(12b)+f(12c)\ge 2f(12)+ f(12abc)\ge 2f(12)+f(abc)$$$$3f(12)\ge f(1a)+f(1b)+f(1c)\ge 2f(1)+f(abc)$$$$3f(1)\ge f(a)+f(b)+f(c)\ge f(abc)$$Combine the above and get that: $$f(123)\ge \frac{2}{3}f(12)+\frac{1}{3}f(abc)\ge \frac{4}{9}f(1)+\frac{2}{9}f(abc)+\frac{1}{3}f(abc) \ge \frac{4}{27}f(abc)+ \frac{2}{9}f(abc)+ \frac{1}{3}f(abc)=\frac{19}{27}f(abc)$$ We can also get a more general result ,consider an arbitrary $m-$tuple $(a_1a_2...a_m)$ then for any $k>0$ $$f(123...k)\ge \frac{m^k-(m-1)^k}{m^k}f(a_1a_2...a_m)$$ We prove this inductively using this inequality: $$mf(123...k)\ge \sum_{i=1}^m f(123...(k-1)a_i)\ge (m-1)f(123...(k-1))+f(a_1a_2...a_m)$$