$ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$
Problem
Source: Chinese TST 2007 2nd quiz P1
Tags: inequalities, trigonometry, quadratics, function, Hi
20.03.2007 08:05
It looks terribly hard at a glance. It turns out to be an old problem of Vietnamese Mathematical Olympiad 1996. After simple substitution $a=\sqrt{\frac{vw}u}$..., we can write it as Let $a,b,c$ be positive reals such that \[ab+bc+ca+abc=4, \] Prove that $a+b+c\geq ab+bc+ca.$ Is it an evidence that they are runing out of new inequalities for national Olympiads? If at all, what a pity!
20.03.2007 08:36
It is a problem from VietnamMO @shencaili: Can you post all problems from China TST 2007 to National Olympiad box?
20.03.2007 11:47
I'm sorry,but we've just had two exams.
20.03.2007 11:52
Otherwise, it is the intention of the proposer to remind his Chinese team members of Vietnam as a host country for this coming IMO. All for a memorable IMO in Vietnam
20.03.2007 12:48
is this proof correct: :we have to prove $z+x+y\ge zx+xy+yz$ when $x+z+y+xyz=4$ let$x\ge y\ge z$ so that $z\le 1$ \[x+z+y+xzy=4 \ \iff x=\frac{4-y-z}{1+yz}\] substituting $x$ we have to prove \[\frac{4-y-z}{1+yz}+y+z\ge \frac{(4-y-z)}{1+yz}.(y+z)+yz\] \[\iff 4+yz(y+z)\ge 4(y+z)-(y+z)^{2}+yz+y^{2}z^{2}\] it becomes to prove $f(y)=(1+z-z^{2})y^{2}+y(z^{2}-4+z)+(4-4z+z^{2})\ge 0$ which is equivalent to it having nonpositive discriminent \[D=(z^{2}+z-4)^{2}-4(4-4z+z^{2})(z+1-z^{2})\le 0\] \[\iff (z-1)^{2}(5z-8)\le 0\] which is true as $z\le 1$ by assumption.
20.03.2007 12:59
Yes, that is perfectly right.
20.03.2007 13:41
thanks pvthuan!
22.03.2007 06:11
anuj kumar wrote: is this proof correct: :we have to prove $z+x+y\ge zx+xy+yz$ when $x+z+y+xyz=4$ let$x\ge y\ge z$ so that $z\le 1$ \[x+z+y+xzy=4 \ \iff x=\frac{4-y-z}{1+yz}\] substituting $x$ we have to prove \[\frac{4-y-z}{1+yz}+y+z\ge \frac{(4-y-z)}{1+yz}.(y+z)+yz \] \[\iff 4+yz(y+z)\ge 4(y+z)-(y+z)^{2}+yz+y^{2}z^{2}\] it becomes to prove $f(y)=(1+z-z^{2})y^{2}+y(z^{2}-4+z)+(4-4z+z^{2})\ge 0$ which is equivalent to it having nonpositive discriminent \[D=(z^{2}+z-4)^{2}-4(4-4z+z^{2})(z+1-z^{2})\le 0 \] \[\iff (z-1)^{2}(5z-8)\le 0 \] which is true as $z\le 1$ by assumption. but you made a mistake.Let be positive reals such that Prove that
23.03.2007 10:00
$u,v,w>0$,such that $u+v+w+\sqrt{uvw}=4$ prove that $\sqrt{\frac{uv}{w}}+\sqrt{\frac{vw}{u}}+\sqrt{\frac{wu}{v}}\geq u+v+w$ ............(1) proof:Let \[a^{2}= \frac{1}{4}u,b^{2}= \frac{1}{4}v,c^{2}= \frac{1}{4}w,{\rm{ }}{\rm{ }}a,b,c > 0 \] we can write it as Let be positive reals such that $a^{2}+b^{2}+c^{2}+abc = 1$...........(2) Prove that $\frac{{bc}}{a}+\frac{{ca}}{b}+\frac{{ab}}{c}\ge 2(a^{2}+b^{2}+c^{2})$ ........... (3) by (2),Let$a = \cos A,b = \cos B,c = \cos C$ thereinto $A,B,C$ are the angles of acute angle$\Delta ABC$, so that $(3) \Leftrightarrow \frac{{\cos B\cos C}}{{\cos A}}+\frac{{\cos C\cos A}}{{\cos B}}+\frac{{\cos A\cos B}}{{\cos C}}\ge 2(\cos^{2}A+\cos^{2}B+\cos^{2}C)$ ...... (4) By"$x^{2}+y^{2}+z^{2}\ge 2yz\cos A+2zx\cos B+2xy\cos C$,thereinto $A,B,C$ are the angles of $\Delta ABC$,$x,y,z \in R$“,we have $\sum_{CycA,B,C}{\frac{{\cos B\cos C}}{{\cos A}}}\ge 2\sum_{CycA,B,C}{\sqrt{\frac{{\cos C\cos A}}{{\cos B}}}}\cdot \sqrt{\frac{{\cos A\cos B}}{{\cos C}}}\cdot \cos A = 2\sum_{CycA,B,C}{\cos^{2}A}$
24.03.2007 06:19
Another one: $a_{1},...,a_{n}>0$ that $a_{1}+..+a_{n}=1$ prove that $(a_{1}a_{2}+..+a_{n}a_{1})(\frac{a_{1}}{a_{2}^{2}+a_{2}}+...)\geq\frac{n}{n+1}$
26.03.2007 12:38
another one: $a,b,c \in (0,1], a^{2}+b^{2}+c^{2}=2$ prove that $\frac{1-b^{2}}{a}+\frac{1-c^{2}}{b}+\frac{1-a^{2}}{c}\leq \frac{5}{4}$ i think it is much harder than the first one and the second one, we can use schur inequality to solve the first one
27.03.2007 18:17
The second inequality if $\sum_{i=1}^{n}a_{i}a_{i+1}\geq \frac{1}{n}$ $\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}(a_{i+1}+1)}\sum_{i=1}^{n}(a_{i+1}+1)\geq (\sum_{i=1}^{n}(\frac{a_{i}}{a_{i+1}})^\frac{1}{2})^{2}\geq n^{2}$ $\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}(a_{i+1}+1)}\geq \frac{n^{2}}{n+1}$ then $\sum_{i=1}^{n}a_{i}a_{i+1}\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}(a_{i+1}+1)}\geq \frac{n}{n+1}$ if $\sum_{i=1}^{n}a_{i}a_{i+1}<\frac{1}{n}$ $(\sum_{i=1}^{n}a_{i}a_{i+1})(\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}(a_{i+1}+1)})(\sum_{i=1}^{n}a_{i}(a_{i+1}+1))\geq (\sum_{i=1}^{n}a_{i})^{3}=1$ And $\sum_{i=1}^{n}a_{i}(a_{i+1}+1)<\frac{n+1}{n}$ We have $(\sum_{i=1}^{n}a_{i}a_{i+1})(\sum_{i=1}^{n}\frac{a_{i}}{a_{i+1}(a_{i+1}+1)})>\frac{n}{n+1}$ BINGO!
05.04.2007 05:24
anuj kumar wrote: is this proof correct: :we have to prove $z+x+y\ge zx+xy+yz$ when $x+z+y+xyz=4$ let$x\ge y\ge z$ so that $z\le 1$ \[x+z+y+xzy=4 \ \iff x=\frac{4-y-z}{1+yz}\] substituting $x$ we have to prove \[\frac{4-y-z}{1+yz}+y+z\ge \frac{(4-y-z)}{1+yz}.(y+z)+yz \] \[\iff 4+yz(y+z)\ge 4(y+z)-(y+z)^{2}+yz+y^{2}z^{2}\] it becomes to prove $f(y)=(1+z-z^{2})y^{2}+y(z^{2}-4+z)+(4-4z+z^{2})\ge 0$ which is equivalent to it having nonpositive discriminent \[D=(z^{2}+z-4)^{2}-4(4-4z+z^{2})(z+1-z^{2})\le 0 \] \[\iff (z-1)^{2}(5z-8)\le 0 \] which is true as $z\le 1$ by assumption. I think it is not right as you assume $x+z+y+xyz=4$ though it should be $xy+xz+yz+xyz=4$ @xuheiedgar: Can you please show how to prove the inequality with Schur? Thank you.
05.04.2007 05:35
I'm a friend of xuheiedgar. He and I use the same method to solve this problem in the exam (Schur). He's not at home now so I'll post the solution. Take $a=\sqrt{\frac{vw}{u}},\ b=\sqrt{\frac{wu}{v}},\ c=\sqrt{\frac{uv}{w}}$ we have $ab+bc+ca+abc=4$ We just need to prove $a+b+c\geqslant ab+bc+ca$ Actually if $a+b+c<ab+bc+ca$ With Schur we have $a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)\geqslant0\\ \Longleftrightarrow(a+b+c)^{3}+9abc\geqslant 4(a+b+c)(ab+bc+ca)$ So $9abc\geqslant[4(ab+bc+ca)-(a+b+c)^{2}](a+b+c)\\ >[4(ab+bc+ca)-(ab+bc+ca)^{2}](a+b+c)\\ =abc(a+b+c)(ab+bc+ca)$ So we have $\sqrt{3(ab+bc+ca)}\cdot(ab+bc+ca)\leqslant(a+b+c)(ab+bc+ca)<9$ That means $ab+bc+ca<3$ Then it's easy that $abc\leqslant\left(\frac{ab+bc+ca}{3}\right)^{3/2}<1$ Hence $ab+bc+ca+abc<4$ Till now it's done.
05.04.2007 09:38
thank you guys for pointing out my mistake .actually i had seen it wrongly .but same method works in correct condition too and to surprise gives the same quadratic function so we have to prove $x+y+z\ge zx+xy+yz$ when $xz+zy+yx+xyz=4$ again from condition we have $x=\frac{4-yz}{z+y+yz}$ and which on substitution wants us to prove \[\frac{4-yz}{z+y+zy}+y+z\ge \frac{4-yz}{z+y+zy}.(y+z)+zy\] \[\iff y^{2}(1+z-z^{2})+y(z+z^{2}-4)+(4-4z+z^{2})\ge 0 \iff D=(z-1)^{2}.(5z-8)\le 0\] which is true. nevertheless my mistake gave rise to newer inequality.
05.04.2007 11:55
shencaili wrote: $u,v,w>0$,such that $u+v+w+\sqrt{uvw}=4$ prove that $\sqrt{\frac{uv}{w}}+\sqrt{\frac{vw}{u}}+\sqrt{\frac{wu}{v}}\geq u+v+w$ $u+v+w+\sqrt{uvw}=4\Longleftrightarrow \sqrt{uvw}=4-(u+v+w)\ (u,v,w>0).$ Thus we can rewrite our inequality as follows. $\sqrt{\frac{uv}{w}}+\sqrt{\frac{vw}{u}}+\sqrt{\frac{wu}{v}}\geq u+v+w$ $\Longleftrightarrow uv+vw+wu\geq (u+v+w)\sqrt{uvw}$ $\Longleftrightarrow uv+vw+wu\geq (u+v+w)\{4-(u+v+w)\}$ $\Longleftrightarrow(u+v+w)^{2}-4(u+v+w)+uv+vw+wu\geq 0$ $\Longleftrightarrow (u+v+w-2)^{2}+uv+vw+wu-4\geq 0.$ Under the condition $0<u+v+w<4,$ We are to prove that $uv+vw+wu\geq 4.$
03.01.2009 21:44
shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$ Let $ u = \frac {4yz}{(x + y)(x + z)},$ $ v = \frac {4xz}{(x + y)(y + z)},$ where $ x,$ $ y$ and $ z$ are positive numbers. Hence, $ w = \frac {4xy}{(x + z)(y + z)}$ and $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w\Leftrightarrow uv + uw + vw\geq(u + v + w)\sqrt {uvw}\Leftrightarrow$ $ \Leftrightarrow\sum_{cyc}\frac {16z^2xy}{(x + y)^2(x + z)(y + z)}\geq\sum_{cyc}\frac {4xy}{(x + z)(y + z)}\cdot\frac {8xyz}{(x + y)(x + z)(y + z)}\Leftrightarrow$ $ \Leftrightarrow\sum_{cyc}(x^3 - x^2y - x^2z + xyz)\geq0,$ which is Schur.
22.04.2009 03:43
10.08.2012 05:23
from titu andrescu 'problems from the books' $ab+ac+bc+abc=4$. Denote m,n,k for which $\frac{2}{m}=a,\frac{2}{n}=b,\frac{2}{k}=c => mnk=m+n+k+2 => \frac{1}{m+1}+\frac{1}{n+1}+\frac{1}{k+1}=1$ $x=\frac{1}{m+1},y=\frac{1}{n+1},z=\frac{1}{k+1}=>m=\frac{y+z}{x},n=\frac{x+z}{y},k=\frac{y+z}{x}=>a=\frac{2x}{y+z},b=\frac{2y}{x+z},c=\frac{2z}{x+y} $ and we want prove that $a+b+c=\frac{2x}{y+z}+\frac{2y}{x+z}+\frac{2z}{x+y}\geq ab+ac+bc=\frac{2x}{y+z}.\frac{2y}{x+z}+\frac{2x}{y+z}.\frac{2z}{x+y}+\frac{2y}{x+z}.\frac{2z}{x+y}$ This inequality equivalent to $\sum_{cyc}x^{3}+\sum_{sym}x^{2}y+3xyz\geq 2\sum_{sym}x^{2}y$ and this is just schur
15.03.2015 23:01
Here is another solution: We may rewrite the given condition as $\left(\sqrt{u}\right)^2 + \left(\sqrt{v}\right)^2 + \left(\sqrt{w}\right)^2 + \left(\sqrt{u}\right)\left(\sqrt{v}\right)\left(\sqrt{w}\right) = 4.$ It is then well-known that the triple $\left(\sqrt{u}, \sqrt{v}, \sqrt{w}\right)$ may be represented as $(2\cos A, 2\cos B, 2\cos C)$ where $A, B, C$ are the angles of an acute triangle. This follows from the well-known identity $\cos^2 A + \cos^2 B + \cos^2 C + 2\cos A\cos B\cos C = 1$; in particular, since $\max\{\sqrt{u}, \sqrt{v}, \sqrt{w}\} < 2$, we can set $\sqrt{u} = 2\cos A, \sqrt{v} = 2\cos B$ for angles $A, B \in \left(0, \frac{\pi}{2}\right)$, whence solving the resulting quadratic equation in $\sqrt{w}$ yields $\sqrt{w} = -2\cos(A + B) = 2\cos C.$
.
31.03.2015 17:56
shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$ let $u=x^2, v=y^2,w=z^2 $ hence $x^2+y^2+z^2+xyz=4 $ $\iff x^2y^2+y^2z^2+z^2x^2\geq xyz(x^2+y^2+z^2) $ let $ x=2\sqrt{\frac{bc}{(a+b)(a+c)}} ,y=2\sqrt{\frac{ac}{(a+b)(b+c)}}, x=2\sqrt{\frac{ba}{(a+c)(b+c)}} $ $\iff \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq 2(\frac{ab}{(a+c)(b+c)}+\frac{bc}{(a+c)(b+a)}+\frac{ac}{(a+b)(b+c)}) $ $\iff a^3+b^3+c^3+3abc\geq a^2b+b^2a+c^2a+a^2c+b^2c+c^2b $ this is true.
21.12.2015 22:55
Substitute $x^2=u, y^2=v, z^2=w$. So we have $x^2+y^2+z^2+xyz=4$. Thus by the identity $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$, we can write $x=2\cos A, y = 2 \cos B, z = 2 \cos C$ where $A, B, C$ are three angles of an acute triangle. So it remains to prove that \[ \sum_{cyc} \frac{\cos A \cos B}{\cos C} \ge 2 \cos^2 A + 2 \cos^2 B + 2 \cos^2 C\]Applying the lemma \[ x^2+y^2+z^2 \ge 2xy \cos B + 2yz \cos C + 2zx \cos A\]with $x^2=\frac{\cos A \cos B}{\cos C}, y^2= \frac{\cos B \cos C}{\cos A}, z^2 = \frac{\cos C \cos A}{\cos B}$ yields the desired. By the way, I was trying to prove the inequality $\sum_{cyc} \frac{\cos A \cos B}{\cos C} \ge 2 \cos^2 A + 2 \cos^2 B + 2 \cos^2 C$ with the quadratic formula after the identity $\cos^2 A +\cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C=1$ (treating as quadratic in $\cos A \cos B \cos C$) or using Cauchy. However I couldn't do so - can anyone find a solution with the two aforementioned methods?
24.07.2021 08:54
shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$ Let $z=\sqrt{\frac{uv}{w}},x=\sqrt{\frac{vw}{u}},y=\sqrt{\frac{wu}{v}}.$ We need to prove that if $xy+yz+zx+xyz=4$, then $x+y+z\ge xy+yz+zx$. It's equivalent to prove that if $x+y+z=xy+yz+zx$, then $xy+yz+zx+xyz\ge 4.$ Let $p=x+y+z,q=xy+yz+zx,r=xyz.$ Note that $p=q$, so $q+r\ge 4 \iff q\frac{q}{p}+r\ge 4\frac{q^3}{p^3}\iff p^2q^2+p^3r\ge 4q^3.$ By Schur we have $p^3-4pq+9r\ge 0\implies p^2q^2+\frac{9q^2r}{p}\ge 4q^3.$ We just need to prove $p^3r\ge \frac{9q^2r}{p}$, which is trivial since $p^2\ge 3q.\blacksquare$
08.06.2022 17:20
$\Delta ABC$ is an acute triangle. prove that: $$\cos A\sin B+\cos B\sin C+\cos C\sin A<\dfrac{5\sqrt{2(\sin^2 A+\sin^2 B+\sin^2 C)}}{8}$$(2007 China TST ?)
08.06.2022 17:55
shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$ Beautiful
08.06.2022 18:19
shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $$ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$$ Let $ u, v, w$ be positive real numbers such that $ u\sqrt {vw} + v\sqrt {wu} + w\sqrt {uv} \geq 1$. Prove that$$ u + v + w\geq \sqrt 3$$
08.06.2022 21:14
Scrutiny wrote: shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$ Let $z=\sqrt{\frac{uv}{w}},x=\sqrt{\frac{vw}{u}},y=\sqrt{\frac{wu}{v}}.$ We need to prove that if $xy+yz+zx+xyz=4$, then $x+y+z\ge xy+yz+zx$. It's equivalent to prove that if $x+y+z=xy+yz+zx$, then $xy+yz+zx+xyz\ge 4.$ Let $p=x+y+z,q=xy+yz+zx,r=xyz.$ Note that $p=q$, so $q+r\ge 4 \iff q\frac{q}{p}+r\ge 4\frac{q^3}{p^3}\iff p^2q^2+p^3r\ge 4q^3.$ By Schur we have $p^3-4pq+9r\ge 0\implies p^2q^2+\frac{9q^2r}{p}\ge 4q^3.$ We just need to prove $p^3r\ge \frac{9q^2r}{p}$, which is trivial since $p^2\ge 3q.\blacksquare$ inventive
09.06.2022 06:04
Let $ u,v,w > 0$ and $u + v + w + \sqrt {uvw}=4 .$ Prove that $$ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w \geq \sqrt {u} + \sqrt {v} + \sqrt {w}$$
09.06.2022 12:28
AMN300 wrote: Substitute $x^2=u, y^2=v, z^2=w$. So we have $x^2+y^2+z^2+xyz=4$. Thus by the identity $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$, we can write $x=2\cos A, y = 2 \cos B, z = 2 \cos C$ where $A, B, C$ are three angles of an acute triangle. So it remains to prove that \[ \sum_{cyc} \frac{\cos A \cos B}{\cos C} \ge 2 \cos^2 A + 2 \cos^2 B + 2 \cos^2 C\]Applying the lemma \[ x^2+y^2+z^2 \ge 2xy \cos B + 2yz \cos C + 2zx \cos A\]with $x^2=\frac{\cos A \cos B}{\cos C}, y^2= \frac{\cos B \cos C}{\cos A}, z^2 = \frac{\cos C \cos A}{\cos B}$ yields the desired. By the way, I was trying to prove the inequality $\sum_{cyc} \frac{\cos A \cos B}{\cos C} \ge 2 \cos^2 A + 2 \cos^2 B + 2 \cos^2 C$ with the quadratic formula after the identity $\cos^2 A +\cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C=1$ (treating as quadratic in $\cos A \cos B \cos C$) or using Cauchy. However I couldn't do so - can anyone find a solution with the two aforementioned methods? Super nice
09.06.2022 14:09
shencaili wrote: $ u,v,w > 0$,such that $ u + v + w + \sqrt {uvw} = 4$ prove that $ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geq u + v + w$
Attachments:

27.06.2023 05:51
Let $u=4\cos ^2A,v=4\cos ^2B,w=4\cos ^2C.$ Then $$u+v+w+\sqrt{uvw}=4(\cos ^2+\cos ^2B+\cos ^2C+2\cos A\cos B\cos C)=4.$$$$ \sqrt {\frac {uv}{w}} + \sqrt {\frac {vw}{u}} + \sqrt {\frac {wu}{v}}\geqslant u + v + w$$$$\Leftrightarrow\sum_{cyc}\frac{2\cos A\cos B}{\cos C}\geqslant 4\sum_{cyc}\cos ^2A.$$$$\Leftrightarrow\sum_{cyc}\left(\sqrt{\frac{\cos A\cos B}{\cos C}}\right)^2\geqslant 2\sum_{cyc}\sqrt{\frac{\cos B\cos C}{\cos A}}\cdot\sqrt{\frac{\cos C\cos A}{\cos B}}\cdot\cos A.$$This is the 嵌入不等式.$\blacksquare$