Find all $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that for all distinct $x,y,z$ $f(x)^2-f(y)f(z)=f(x^y)f(y)f(z)[f(y^z)-f(z^x)]$
Problem
Source: Pakistan TST(2). P3. Proposed by Awais Chisti and Sualeh Asif
Tags: functional equation, Functional Equations, algebra proposed, algebra, algebraic identities
29.01.2017 00:03
29.01.2017 00:07
Your solution is not valid since $x,y,z$ should be distinct.
29.01.2017 00:09
math90 wrote: Your solution is not valid since $x,y,z$ should be distinct. oh, thanks, I totally misread the problem...
29.01.2017 00:53
I have fixed a small typo..
29.01.2017 02:42
I hope, that now it's okay(PM me or write below, if there is something unclear...)... Let $A(x,y,z)=f(x)^2-f(y)f(z)=f(x^y)f(y)f(z)[f(y^z)-f(z^x)]$ be given assertion. From \begin{align*} A(\underbrace{x,y,1}_{x\neq y\neq 1\neq x})& \Longrightarrow f(x)^2-f(y)f(1)=f(x^y)f(y)f(1)(f(y)-f(1)):=B(x,y),\forall x\neq 1 \\ &\Longrightarrow [ f(y)> f(1)\Longleftrightarrow f(x)^2> f(y)f(1) ] \vee [f(y)< f(1)\Longleftrightarrow f(x)^2< f(y)f(1)]\ . \ . \ . \ \spadesuit \end{align*}Also note that if there exists $1\neq m\in \mathbb{R}^+$ such $f(m)=f(1)$ then from $B(x,m)\Longrightarrow f(x)=f(1), \forall x\neq 1$, and thus function is constant and this obviously satisfy condition for any $c\in \mathbb{R}^+$ i.e. $\boxed{f(x)=c}$. Thus now we know that $$f(r)=f(1)\Longleftrightarrow r=1\ . \ . \ . \ \bigstar$$Thus assume first(case 1...) that $\exists y$ such that $f(y)> f(1)\stackrel{\spadesuit}{\Longrightarrow} f(x)^2> f(y)f(1)> f(1)^2\Longleftrightarrow f(x)> f(1)$(this obviously should hold for every $x\neq y$, since $x$ doesn't depend on $y$ in equation, this inequality also holds for $f(y)>f(1)$, since that is case that we consider now ...) , but as this statement obviously holds for every $\mathbb{R}^+\ni x\neq 1$, there can not exist $y$ such that $f(y)< f(1)$, thus $f(1)$ is minimum of function $f$. . . $\clubsuit$ Now \begin{align*} A(\underbrace{x,1,z}_{x\neq 1\neq z\neq x})& \Longrightarrow f(x)^2-f(1)f(z)=f(x)f(y)f(z)(f(1)-f(z^x))\stackrel{\clubsuit \& \bigstar}{<}0 \\ & \Longrightarrow f(x)^2<f(1)f(z)\stackrel{\clubsuit}{<}f(z)^2 \\ & \Longleftrightarrow f(x)<f(z), \forall x\neq z\neq 1\neq x \end{align*}which is obviously contradiction(if you wonder why, then just assume that $f(a)>f(b)$ for $z=a$ and $x=b$, but then for $z=b$ and $x=a$ inequality doesn't holds... ) Thus assume now(case 2...) that $\exists y$ such that $f(y)< f(1)\stackrel{\spadesuit}{\Longrightarrow} f(x)^2< f(y)f(1)< f(1)^2\Longleftrightarrow f(x)< f(1)$, but as this statement obviously holds for every $\mathbb{R}^+\ni x\neq 1$, there can not exist $y$ such that $f(y)> f(1)$, thus $f(1)$ is maximum of function $f$. . . $\clubsuit \clubsuit$ Now \begin{align*} A(\underbrace{x,1,z}_{x\neq 1\neq z\neq x})& \Longrightarrow f(x)^2-f(1)f(z)=f(x)f(y)f(z)(f(1)-f(z^x))\stackrel{\clubsuit\clubsuit\& \bigstar}{>}0 \\ & \Longrightarrow f(x)^2>f(1)f(z)\stackrel{\clubsuit\clubsuit}{>}f(z)^2 \\ & \Longleftrightarrow f(x)>f(z), \forall x\neq z\neq 1\neq x \end{align*}which is obviously contradiction(if you wonder why, then just assume that $f(a)<f(b)$ for $z=a$ and $x=b$, but then for $z=b$ and $x=a$ inequality doesn't holds... )
29.01.2017 08:36
My solution: Multiply each side by $f(x)$ to get $f(x)^3-f(x)f(y)f(z)=f(x)f(y)f(z)f(x^y)[f(y^z)-f(z^x)]$ Let this assertion be $P(x,y,z)$. $P(x,y,z)+P(y,z,x)+P(z,x,y)\implies f(x)^3+f(y)^3+f(z)^3=3f(x)f(y)f(z)$ for all distinct $x,y,z$. By AM-GM $f(x)^3+f(y)^3+f(z)^3\geq 3f(x)f(y)f(z)$ Since equality holds, we have $f(x)=f(y)=f(z)$ for all distinct $x,y,z$. Hence $\boxed{f(x)=c}$, where $c\in\mathbb R^+$. Clearly all these solutions work.
29.01.2017 11:50
math90 wrote: My solution: Multiply each side by $f(x)$ to get $f(x)^3-f(x)f(y)f(z)=f(x)f(y)f(z)f(x^y)[f(y^z)-f(z^x)]$ Let this assertion be $P(x,y,z)$. $P(x,y,z)+P(y,z,x)+P(z,x,y)\implies f(x)^3+f(y)^3+f(z)^3=3f(x)f(y)f(z)$ for all distinct $x,y,z$. By AM-GM $f(x)^3+f(y)^3+f(z)^3\geq 3f(x)f(y)f(z)$ Since equality holds, we have $f(x)=f(y)=f(z)$ for all distinct $x,y,z$. Hence $\boxed{f(x)=c}$, where $c\in\mathbb R^+$. Clearly all these solutions work. Awesome solution .
11.06.2019 16:57
sualehasif996 wrote: Find all $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that for all distinct $x,y,z$ $f(x)^2-f(y)f(z)=f(x^y)f(y)f(z)[f(y^z)-f(z^x)]$ How bout a similar functional equation but : \[ f(x^2) - f(y)f(z) = f(x^y) f(y) f(z) [f(y^z) - f(z^x) \]Cause that is what was written in the other book with the same source (?) NB : Maybe a typo but still wonder if it is still solvable
15.06.2019 01:24
The beginning idea is pretty much the same except that now the equation is: $$ f(x)f(x^2) + f(y)f(y^2) + f(z)f(z^2) = 3f(x)f(y)f(z) $$ for all pairwise distinct positive real numbers $x$, $y$, and $z$.
21.07.2019 17:44
Here is my solution for this problem Solution $f^2(x) - f(y)f(z) = f(x^y)f(y)f(z)[f(y^z) - f(z^x)]$ Let $f(1) = a$ Let $x = 1$, we have: $a^2 - f(y)f(z) = af(y)f(z)[f(y^z) - f(z)]$ $(1)$ Let $y = 1$, $z$ be $y$, $x$ be $z$, we have: $f^2(z) - af(y) = af(y)f(z)[a - f(y^z)]$ $(2)$ From $(1)$, $(2)$, we have: $a^2 - f(y)f(z) + f^2(z) - af(y) = af(y)f(z)[a - f(z)]$ $(3)$ In $(3)$, let $y$ be $z$, $z$ be $y$, we have: $a^2 - f(z)f(y) + f^2(y) - af(z) = af(z)f(y)[a - f(y)]$ $(4)$ From $(3)$, $(4)$, we have: $f^2(z) - af(y) + af(y)f^2(z) = f^2(y) - af(z) + af^2(y)f(z)$ Then: $[f(z) - f(y)][af(y)f(z) + f(y) + f(z) + a] = 0$ So: $f(y) = f(z)$ or $f(x) = c, \forall x \in \mathbb{R^+}, c \in \mathbb{R^+}$ Retry, we see that: $f(x) = c$ satisfies the problem In conclusion, we have: $f(x) = c, \forall x \in \mathbb{R^+}, c \in \mathbb{R^+}$
23.03.2024 15:53
Let $P(x,y,z)$ be the assertion for this FE. Then $P(x,y,z)+P(y,z,x)+P(z,x,y)$ gives $f(x)^2+f(y)^2+f(z)^2=f(x)f(y)+f(y)f(z)+f(z)f(x)$. By AM-GM we have $f(x)^2+f(y)^2\ge 2f(x)f(y)$. As equality exists so we have $f(x)=f(y)=f(z)=c$ for some constant $c \in \mathbb{R}^+$.