Problem

Source: Philippines MO 2016/1

Tags: algebra, invariant, Discriminant, quadratics



The operations below can be applied on any expression of the form \(ax^2+bx+c\). $(\text{I})$ If \(c \neq 0\), replace \(a\) by \(4a-\frac{3}{c}\) and \(c\) by \(\frac{c}{4}\). $(\text{II})$ If \(a \neq 0\), replace \(a\) by \(-\frac{a}{2}\) and \(c\) by \(-2c+\frac{3}{a}\). $(\text{III}_t)$ Replace \(x\) by \(x-t\), where \(t\) is an integer. (Different values of \(t\) can be used.) Is it possible to transform \(x^2-x-6\) into each of the following by applying some sequence of the above operations? $(\text{a})$ \(5x^2+5x-1\) $(\text{b})$ \(x^2+6x+2\)