A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular. Alternative formulation. Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC = BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other. Original formulation: Let $ ABCD$ be a convex quadrilateral such that $ AC = BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$
Problem
Source: IMO Shortlist 1992, Problem 5
Tags: geometry, convex quadrilateral, diagonals, perpendicular lines, IMO Shortlist
28.10.2003 13:43
For this one complex numbers should work just fine. Let E be the center of the equilateral triangle constructed on AB. F, G, H are the same for sides BC, CD, DA respectively. Let small letters (like a,b,c etc) be the complex numbers that represent the points with the correspondinc\g s\capital letters (A, B, C etc.) Let z=cos 120+i*sin 120. Then e=(a-bz)/(1-z), f=(b-cz)/(1-z), g=(c-dz)/(1-z), h=(d-az)/(1-z). If we calculate A=(e-g)/(h-f) and its conjugate and we take into account the fact that |a-c|=|b-d| we get A {conjugate} = -A, which is equivalent to A=(e-g)/(h-f) = k*i with k a real number and i=(-1)^1/2 (*). But (*) is the condition for the lines EG and FH to be perpendicular. This is the usual method by which these prbs involving equilateral triangles can be solved (I think there are other methods, but for this specific problem this the best way I could find). [Moderator edit: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=17861 ]
13.08.2008 12:40
Let $ ABCD$ be a convex quadrilateral. We erect four equilateral triangles $ WAB$, $ XBC$, $ YCD$, $ ZDA$ on its sides $ AB$, $ BC$, $ CD$, $ DA$ exterior to the quadrilateral $ ABCD$, and denote the centroids of these triangles by $ S_{1}$, $ S_{2}$, $ S_{3}$, $ S_{4}$, respectively. Prove that: $ S_{1}S_{3}$ is perpendicular to $ S_{2}S_{4}$ if and only if $ AC = BD$. Solution by Myth: It is well known that $ S_1S_3\perp S_2S_4$ iff $ S_1S_2^2 + S_3S_4^2 = S_2S_3^2 + S_4S_1^2$. Apply cosine theorem to $ AS_1S_4$ and $ CS_2S_3$. We obtain: \[ S_4S_3^1 + S_2S_3^2 = \frac {1}{3}(AB^2 + BC^2 + CD^2 + DA^2) - \frac {2}{3}AB\cdot AD\cdot\cos(A + \pi/3) - \frac {2}{3}CB\cdot CD\cdot\cos(C + \pi/3). \] We can write \[ BD^2 = AB^2 + AD^2 - 2AB\cdot AD\cdot\cos(A) = CB^2 + CD^2 - 2CB\cdot CD\cdot\cos(C) \] and \[ AB\cdot AD\cdot\sin(A) + CB\cdot CD\cdot\sin(C) = 2S_{ABCD}. \] So after some easy transformation we conclude that \[ S_4S_3^1 + S_2S_3^2 = \frac {1}{6}(AB^2 + BC^2 + CD^2 + DA^2) + \frac {1}{3}BD^2 + \frac {\sqrt {3}}{6}S_{ABCD}. \] Analogously, \[ S_4S_1^2 + S_2S_3^2 = \frac {1}{6}(AB^2 + BC^2 + CD^2 + DA^2) + \frac {1}{3}AC^2 + \frac {\sqrt {3}}{6}S_{ABCD}. \] Omid Hatami notes: Also this can easily proved with vector geometry.
03.08.2013 05:13
Could anyone post the vector solution ?
16.05.2014 15:49
Let $ABCD$ be a quadrilateral with equilateral triangles $ABE,BFC,CGD,DHA$ constructed externally.Then the coordinates of $E,F,G,H$ are $e=b+(a-b)\epsilon$ $f=c+(b-c)\epsilon$ $g=d+(c-d)\epsilon$ $h=a+(d-a)\epsilon$ Thus coordinates of $O_1,O_2,O_3,O_4$ are $o_1=\frac{a+2b+(a-b)\epsilon}{3}$ $o_2=\frac{b+2c+(b-c)\epsilon}{3}$ $o_3=\frac{c+2d+(c-d)\epsilon}{3}$ $o_4=\frac{d+2a+(d-a)\epsilon}{3}$ where $\epsilon=cos60^{\circ}+sin60^{\circ}$ After a bit of manipulation using the relations we get that $|o_1-o_2|^2=|o_2-o_3|^2=|o_3-o_4|^2=|o_4-o_1|^2$ and $o_1-o_3|^2=|o_2-o_4|^2 \Leftrightarrow |a-c|^2=|b-d|^2$(It won't be difficult at all if we use the realtion $|a-b|^2=(a-b)(\overline{a}-\overline{b})$).So we are through.... Another related problem: On the sides of $AB,BC,CD,DA$ of quadrilateral $ABCD$ and exterior to the quadrilateral,we construct squares of centers $O_1,O_2,O_3,O_4$ respectively.Show that $O_1O_3 \perp O_2O_4$ and $O_1O_3=O_2O_4$
25.06.2015 01:27
Haha this problem is crying for complex bash... Let $a,b,c,d,o_1,o_2,o_3,o_4$ be the affixes of $A,B,C,D,O_1,O_2,O_3,O_4$, respectively. Note that $a$ is the result of rotating $b$ by $\tfrac{\pi}{3}$ about $o_1$. We have the equation \[ a-o_1=\varepsilon(b-o_1) \Rightarrow o_1=\dfrac{a-b\varepsilon}{1-\varepsilon} \] where $\varepsilon=e^{\tfrac{2\pi i}{3}}$. Similarly, $o_2=\tfrac{b-c\varepsilon}{1-\varepsilon}, o_3=\tfrac{c-d\varepsilon}{1-\varepsilon}, o_4=\tfrac{d-a\varepsilon}{1-\varepsilon}$. We want to show $O_1O_3 \perp O_2O_4$, which from Orthogonality criterion is equivalent to \[ \dfrac{\dfrac{a-b\varepsilon}{1-\varepsilon}-\dfrac{c-d\varepsilon}{1-\varepsilon}}{\overline{\dfrac{a-b\varepsilon}{1-\varepsilon}}-\overline{\dfrac{c-d\varepsilon}{1-\varepsilon}}} = -\dfrac{\dfrac{b-c\varepsilon}{1-\varepsilon}-\dfrac{d-a\varepsilon}{1-\varepsilon}}{\overline{\dfrac{b-c\varepsilon}{1-\varepsilon}}-\overline{\dfrac{d-a\varepsilon}{1-\varepsilon}}} \] \[ \iff \dfrac{a-c-(b-d)\varepsilon}{\overline{a-c}-\overline{(b-d)\varepsilon}} = - \dfrac{b-d-(c-a)\varepsilon}{\overline{b-d}-\overline{(c-a)\varepsilon}}\] \[ \iff \left[ a-c-(b-d)\varepsilon \right] \left[ \overline{b-d}-\overline{(c-a)\varepsilon} \right] = -\left[ b-d-(c-a)\varepsilon \right] \left[ \overline{a-c}-\overline{(b-d)\varepsilon} \right] \] \[ \iff (a-c)\overline{b-d}-(a-c)\overline{(c-a)}\overline{\varepsilon}-(b-d)\overline{b-d}\varepsilon+(b-d)\overline{c-a}\varepsilon\overline{\varepsilon}=-(b-d)\overline{a-c}+(b-d)\overline{(b-d)}\overline{\varepsilon}+(c-a)\overline{a-c}\varepsilon-(c-a)\overline{b-d}\varepsilon\overline{\varepsilon} \] Let $x=a-c$, $y=b-d$. (Should've done this earlier but whatever...) \[ \iff x\overline{y}+x\overline{x}\dfrac{1}{\varepsilon}-y\overline{y}\varepsilon-y\overline{x} = -y\overline{x}+y\overline{y}\dfrac{1}{\varepsilon}-x\overline{x}\varepsilon+x\overline{y}\] \[\iff x\overline{x}(\varepsilon+\dfrac{1}{\varepsilon})-y\overline{y}(\varepsilon+\dfrac{1}{\varepsilon})=0\] \[\iff x\overline{x}=y\overline{y} \] \[\iff AC=BD \] which is given.
25.06.2015 04:02
Really if is only if, like said the post #3 and this true for internal equilaterals too. This is consequence of the area $\Delta '$ in the Napoleon triangle of $\triangle ABC$ $\Delta' = \frac{[ABC]}{2}+\frac{\sqrt{3}(a^2+b^2+c^2)}{24}$ (outer) $\Delta'=\frac{a^2+b^2+c^2-4\sqrt{3}[ABC]}{6}$ (internal, this implies Weitzenböck's inequality) Is sufficient prove that $O_1O_2^2+O_3O_4^2=O_2O_3^2+O_1O_4^2$ and this trivial, with this formule because area of a equilateral triangle is $\frac{l^2\sqrt{3}}{4}$
14.12.2022 06:32
Let $\omega$ be a third root of unity. Then we can compute the centers are $\frac{a\omega - b}{\omega-1}$ and cyclic permutations, so it suffices to show that$$\frac{o_1-o_3}{o_2-o_4} = \frac{\omega(a-c)-(b-d)}{(b-d)\omega + (a-c)}$$is pure imaginary. The conjugate equals \begin{align*} \frac{\overline \omega \overline{a-c} - \overline{b-d}}{\overline{b-d} \overline \omega + \overline{a-c}} &= \frac{\overline{a-c} - \overline{b-d} \omega}{\overline{b-d}-\overline{a-c} \omega} \\ &= \frac{\frac{\overline{b-d}(b-d)}{a-c} - \frac{\overline{a-c}(a-c)}{b-d} \omega}{\frac{\overline{a-c}(a-c)}{b-d} + \frac{\overline{b-d}(b-d)}{a-c}\omega} \\ &= \frac{(b-d) - (a-c) \omega}{(b-d) \omega + a-c}, \end{align*}which is the negative of the original, as needed.