Let $ABC$ be a right triangle with the hypotenus $BC.$ Let $BE$ be the bisector of the angle $\angle ABC.$ The circumcircle of the triangle $BCE$ cuts the segment $AB$ again at $F.$ Let $K$ be the projection of $A$ on $BC.$ The point $L$ lies on the segment $AB$ such that $BL=BK.$ Prove that $\frac{AL}{AF}=\sqrt{\frac{BK}{BC}}.$
Problem
Source: Saudi Arabia JTST -2015,P4
Tags: geometry
07.10.2016 18:45
Any idea?
07.10.2016 19:00
What do you mean by projection?Are you taking component?
07.10.2016 19:10
Please can someone explain me?
07.10.2016 19:12
Projection means the foot of perpendicular
07.10.2016 19:18
@above thanks
07.10.2016 19:24
I am getting the intersection of FE and AK as the circumcenter of triangle AFE.
07.10.2016 19:33
Length bashing kills the problem, $BK=c^2/a$,$BC=a$,$AL=(ac-c^2)/a$,$AF=b^2/(a+c)$
07.10.2016 19:35
I think similarity also kills the problem.
07.10.2016 19:36
tarzanjunior wrote: Length bashing kills the problem, $BK=c^2/a$,$BC=a$,$AL=(ac-c^2)/a$,$AF=b^2/(a+c)$ CAn you show your full solution?
07.10.2016 19:36
Length basing is much easier, just write all lengths in terms of the sides $a,b,c$
07.10.2016 19:38
tarzanjunior wrote: Length basing is much easier, just write all lengths in terms of the sides $a,b,c$ Please show your solution(500th post).
07.10.2016 19:49
Ferid.---. wrote: Let $ABC$ be a right triangle with the hypotenus $BC.$ Let $BE$ be the bisector of the angle $\angle ABC.$ The circumcircle of the triangle $BCE$ cuts the segment $AB$ again at $F.$ Let $K$ be the projection of $A$ on $BC.$ The point $L$ lies on the segment $AB$ such that $BL=BK.$ Prove that $\frac{AL}{AF}=\sqrt{\frac{BK}{BC}}.$ We should use law of sines,$AF \cdot AB=AE \cdot AC$ and angle-bisector theorem.
07.10.2016 20:02
Ferid.---. wrote: Let $ABC$ be a right triangle with the hypotenus $BC.$ Let $BE$ be the bisector of the angle $\angle ABC.$ The circumcircle of the triangle $BCE$ cuts the segment $AB$ again at $F.$ Let $K$ be the projection of $A$ on $BC.$ The point $L$ lies on the segment $AB$ such that $BL=BK.$ Prove that $\frac{AL}{AF}=\sqrt{\frac{BK}{BC}}.$ $AL = c - BL = c - BK = c - \frac{{{c^2}}}{a} \Leftrightarrow $ $\boxed{AL = \frac{{c(a - c)}}{a}}$ $(1)$ $AF \cdot c = AE \cdot b = \frac{{bc}}{{a + c}} \cdot b \Leftrightarrow $ $\boxed{AF = \frac{{{b^2}}}{{a + c}}}$ $(2)$ $(1), (2)$: $\frac{{AL}}{{AF}} = \frac{{c(a - c)(a + c)}}{{a{b^2}}} = \frac{{c({a^2} - {c^2})}}{{a{b^2}}} = \frac{{c{b^2}}}{{a{b^2}}} = \frac{c}{a} = \sqrt {\frac{{{c^2}}}{{{a^2}}}} = \sqrt {\frac{{{c^2}}}{{{b^2} + {c^2}}}} = \sqrt {1 + \frac{{{c^2}}}{{{b^2}}}} = \sqrt {1 + \frac{{BK}}{{KC}}} = \sqrt {\frac{{BK}}{{BC}}} $
Attachments:

02.11.2022 00:47
proposed by Tran Quang Hung, Vietnam