Problem

Source: Balkan MO 2014 Shortlist

Tags: number theory, Balkan Mathematics Olympiad, Balkan MO Shortlist, Parity



$\boxed{N1}$Let $n$ be a positive integer,$g(n)$ be the number of positive divisors of $n$ of the form $6k+1$ and $h(n)$ be the number of positive divisors of $n$ of the form $6k-1,$where $k$ is a nonnegative integer.Find all positive integers $n$ such that $g(n)$ and $h(n)$ have different parity.