Problem

Source: Iran MO 3rd round 2016 finals - Algebra P1

Tags: algebra, polynomial



Let $P(x) \in \mathbb {Z}[X]$ be a polynomial of degree $2016$ with no rational roots. Prove that there exists a polynomial $T(x) \in \mathbb {Z}[X]$ of degree $1395$ such that for all distinct (not necessarily real) roots of $P(x)$ like $(\alpha ,\beta):$ $$T(\alpha)-T(\beta) \not \in \mathbb {Q}$$ Note: $\mathbb {Q}$ is the set of rational numbers.