Let $ABC$ be an arbitrary triangle. Let $E,E$ be two points on $AB,AC$ respectively such that their distance to the midpoint of $BC$ is equal. Let $P$ be the second intersection of the triangles $ABC,AEF$ circumcircles . The tangents from $E,F$ to the circumcircle of $AEF$ intersect each other at $K$. Prove that : $\angle KPA = 90$
Problem
Source: Iranian 3rd round 2016 first geometry exam problem 2
Tags: geometry
17.08.2016 13:07
First a trivial Lemma: consider two arbitrary lines $\ell_1,\ell_2$ and consider three arbitrary points $A,B,C$ then let $A_1,A_2$ be the projections of $A$ on $\ell_1,\ell_2$ respectively and let $A'$ be the midpoint of it. we define $B',C'$ similarly then $A',B',C'$ are collinear if and if only $A,B,C$ are collinear. Proof: it's so easy just observe that using vectors and thales theorem we have $\overrightarrow{A'B'}=\frac{1}{2}(\overrightarrow{A_1B_1}+\overrightarrow{A_2B_2}),\dots\Longleftrightarrow \frac{A_1B_1}{A_2B_2}=\frac{B_1C_1}{B_2C_2}$. Back to original problem: Let the perpendiculars from $E,F$ to $AC,AB$ intersect $AB,AC$ at $B',C'$ respectively and $H$ be the orthocenter of $AB'C'$, $Q,M$ the midpoint of $EF,BC$ and $T,S$ be the antipode of $A$ WRT $\odot(AB'C'),\odot(ABC)$ respectively. note that $K$ is midpoint of $B'C'$ and $K,T,H$ are collinear (well known). Let $TK$ cut $\odot(AB'C')$ again at $P'$ since $\angle TP'A=90$ we get that $P'\in \odot(AH)$ now from the lemmma for two lines $AB,AC$ and three collinear points $Q,M,K$ we deduce that $S\in TP$ hence $P'\in \odot(ABC)\Longrightarrow P=P'$. Q.E.D
Attachments:

23.08.2016 11:41
hem ,Q,M,K colinear not Q,M,T and this cost my time one hour
23.08.2016 11:48
It's fairly straight forward after this (For starters, see that sine rule will work nicely after this)
23.08.2016 16:42
what is antipode, can someone tell me?
23.08.2016 16:50
Reynan wrote: what is antipode, can someone tell me? The antipode of a point is the point which is diametrically opposite to it.
23.08.2016 18:08
madmathlover wrote: Reynan wrote: what is antipode, can someone tell me? The antipode of a point is the point which is diametrically opposite to it. can you tell me more clearly? what is diametrically opposite? sorry i am noob:(
23.08.2016 19:16
Reynan wrote: madmathlover wrote: Reynan wrote: what is antipode, can someone tell me? The antipode of a point is the point which is diametrically opposite to it. can you tell me more clearly? what is diametrically opposite? sorry i am noob:( Let $\Omega$ be a circle.$AA_{1}$ is a diameter of the circle.Then $A_{1}$ is diametrically opposite to $A$ and vice versa.
27.08.2016 14:33
Any different solution?
01.01.2017 02:23
Let $U,V$ denote midpoints of segments $A'B,A'C$ where $A'$ is antipode of $A$ WRT $\odot(AEF).$ Since $\Delta EUM$ and $\Delta MVF$ are congruent, it follows that $\angle A'BE=\angle A'CF$ and from here it follows that $\Delta EBA' \sim \Delta A'CF.$ But recall that $P$ is center of spiral similarity mapping $BE \mapsto FC$ hence $\Delta PEB \sim \Delta PFC.$ On account of these 2 similarities it follows that $$\frac{PE}{PF}=\frac{EB}{FC}=\frac{EA'}{A'F}$$Hence quadrilateral $PEA'F$ is harmonic, so it follows that $P,A',K$ are collinear, as desired.
01.01.2017 16:09
Problem. Let $ABC$ be a triangle inscribed in circle $(O)$ with median $AM$. $E,F$ lie on $CA,AB$ such that $ME=NF$. The tangents at $E,F$ of $(AEF)$ interesect at $S$. $(AEF)$ cuts $(O)$ again at $G$. Prove that $\angle AGS=90^\circ$. Proof. Let $N$ be the midpoint of $EF$ then $M,N,S$ are collinear. The tangents at $B,C$ of $(O)$ intersect at $T$. The spiral similarity center $G$ transform $N,E,F,S$ to $M,B,C,T$, reps. We get $\angle GST=\angle GNM=\angle GMT$ so $GSMT$ is cyclic. Combine with property of symmedian we get angles chasing $$\angle BGT=\angle MGC=\angle BMG-\angle MCG=\angle BMN-\angle GMN-\angle MCG=\angle BMN-\angle GCE-\angle MCG=\angle TMN-90^\circ-\angle BCA=180^\circ-\angle SGT-90^\circ-(180^\circ-\angle BGA)=\angle BGT+\angle SGA-90^\circ.$$We deduce $\angle AGS=90^\circ$.
Attachments:

01.01.2017 16:22
General problem. Let $ABC$ be a triangle inscribed in circle $(O)$. $M$ is a point on perpendicular bisector of $BC$ and inside triangle $ABC$. $E,F$ lie on $CA,AB$ such that $ME=MF$. $N$ lie inside triangle $AEF$ such that $\triangle NEF\sim\triangle MBC$. $(K)$ is circumcircle of triangle $AEF$. The tangents at $E,F$ of circles $(KNE),(KNF)$ interesect at $S$. $(K)$ cuts $(O)$ again at $G$. Prove that $\angle AGS=90^\circ$.
Attachments:

11.08.2018 14:06
30.07.2019 06:46
Let $M$ be the midpoint of $EF,O$ be the center of $(PAFE),$ and $Q\neq P$ be the intersection of $PK$ with $(PAFE).$ Lemma 1: If $A,B,C,D$ are points such that $AC\cap BD=X,$ then $(ACX)\cap (ABX)=P\neq X$ is the spiral center sending $AB$ to $CD.$ Proof: Well known. $\Box$ By Lemma 1, the spiral similarity $\phi$ sending $EF$ to $BC$ is centered at $P,$ so let $\phi(Q)=Q'$ and $\phi(M)=M'.$ Since $PQ$ is the $P$-symmedian chord in $\triangle PEF,$ it's well known that $POMQ$ is cyclic; however, $O$ also lies on $MM',$ so $O,Q,Q'$ have to be collinear again due to Lemma 1. Now it suffices to show that $A,Q,Q'$ are collinear, but this is trivial: $$\measuredangle EAQ=\measuredangle EFQ=\measuredangle BCQ'=\measuredangle BAQ'=\measuredangle EAQ'$$from $\phi(\triangle EFQ)=\triangle BCQ',$ so we're done. $\blacksquare$ [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(15cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -7.58, xmax = 7.58, ymin = -5.77, ymax = 5.77; /* image dimensions */ pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); /* draw figures */ draw((-0.78,5.29)--(-3.42,-3.69), linewidth(1) + wrwrwr); draw((-3.42,-3.69)--(4.82,-3.69), linewidth(1) + wrwrwr); draw((4.82,-3.69)--(-0.78,5.29), linewidth(1) + wrwrwr); draw(circle((0.7,-0.02316258351893081), 5.515441654020607), linewidth(1) + wrwrwr); draw(circle((-0.6184291103248956,2.2417049276249013), 3.0525739959346954), linewidth(1) + wrwrwr); draw((0.37780385192440746,-2.2404169589134835)--(-3.1893652954799423,3.8874555565225872), linewidth(1) + wrwrwr); draw((-3.1893652954799423,3.8874555565225872)--(-0.78,5.29), linewidth(1) + wrwrwr); draw((-2.4040259437765394,-0.23414885420959397)--(2.047838573787419,0.7553588584623171), linewidth(1) + wrwrwr); draw((2.047838573787419,0.7553588584623171)--(0.7,-3.69), linewidth(1) + wrwrwr); draw((0.7,-3.69)--(-2.4040259437765394,-0.23414885420959397), linewidth(1) + wrwrwr); draw((-0.78,5.29)--(-0.21005095760194714,-5.463006689141201), linewidth(1) + wrwrwr); draw((-0.6184291103248956,2.2417049276249013)--(0.7,-3.69), linewidth(1) + wrwrwr); draw((-0.17809368499456024,0.26060500212636156)--(-0.45685822064979176,-0.8065901447501977), linewidth(1) + wrwrwr); draw((0.7,-3.69)--(-0.21005095760194714,-5.463006689141201), linewidth(1) + wrwrwr); draw(circle((-3.5070639537967256,0.5601671564337461), 3.342421358066939), linewidth(1) + wrwrwr); draw((-0.6184291103248956,2.2417049276249013)--(-2.4040259437765394,-0.23414885420959397), linewidth(1) + wrwrwr); draw((-0.6184291103248956,2.2417049276249013)--(2.047838573787419,0.7553588584623171), linewidth(1) + wrwrwr); draw((-3.1893652954799423,3.8874555565225872)--(-0.21005095760194714,-5.463006689141201), linewidth(1) + wrwrwr); draw((2.047838573787419,0.7553588584623171)--(0.37780385192440746,-2.2404169589134835), linewidth(1) + wrwrwr); draw((0.37780385192440746,-2.2404169589134835)--(-2.4040259437765394,-0.23414885420959397), linewidth(1) + wrwrwr); /* dots and labels */ dot((4.82,-3.69),dotstyle); label("$C$", (4.9,-3.49), NE * labelscalefactor); dot((-3.42,-3.69),dotstyle); label("$B$", (-3.34,-3.49), NE * labelscalefactor); dot((0.7,-3.69),linewidth(4pt) + dotstyle); label("$M'$", (0.78,-3.53), NE * labelscalefactor); dot((-0.78,5.29),dotstyle); label("$A$", (-0.7,5.45), NE * labelscalefactor); dot((-2.4040259437765394,-0.23414885420959397),dotstyle); label("$E$", (-2.32,-0.03), NE * labelscalefactor); dot((2.047838573787419,0.7553588584623171),linewidth(4pt) + dotstyle); label("$F$", (2.12,0.91), NE * labelscalefactor); dot((-3.1893652954799423,3.8874555565225872),linewidth(4pt) + dotstyle); label("$P$", (-3.1,4.05), NE * labelscalefactor); dot((0.37780385192440746,-2.2404169589134835),linewidth(4pt) + dotstyle); label("$K$", (0.46,-2.09), NE * labelscalefactor); dot((-0.21005095760194714,-5.463006689141201),linewidth(4pt) + dotstyle); label("$Q'$", (-0.14,-5.31), NE * labelscalefactor); dot((-0.6184291103248956,2.2417049276249013),linewidth(4pt) + dotstyle); label("$O$", (-0.54,2.41), NE * labelscalefactor); dot((-0.45685822064979176,-0.8065901447501977),linewidth(4pt) + dotstyle); label("$Q$", (-0.38,-0.65), NE * labelscalefactor); dot((-0.17809368499456024,0.26060500212636156),linewidth(4pt) + dotstyle); label("$M$", (-0.1,0.43), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy]
08.08.2020 20:51
If $ AT $ is diameter of circle $AEF$ we claim that $\angle {TBA} =\angle {TCA} $ . Proof of the claim : if it's not happen ; get $L , L'$ such that $\angle{TBL} = \angle{TCA} , \angle{TCL'} = \angle{TBA} , \angle{TLB} = \angle{TL'C} = 90 $ It's easy to check that $ME = MF = ML = ML'$ and $ \triangle {TEL} \sim \triangle{TFL'} $ so we can check that $ \triangle {ETF} \cong \triangle {L'TL} $ so $BT=CT$ and it get us $\angle{B} =\angle{C}$ , and the claim is proved . know from the claim we know $\frac{TE}{TF} =\frac {BE}{CF} = \frac {PE}{PF} $ so $(EF,PT)=-1$ , so $P , T , K $ are collinear $\blacksquare$
01.05.2021 13:41
Arefe wrote: If $ AT $ is diameter of circle $AEF$ we claim that $\angle {TBA} =\angle {TCA} $ . Proof of the claim : if it's not happen ; get $L , L'$ such that $\angle{TBL} = \angle{TCA} , \angle{TCL'} = \angle{TBA} , \angle{TLB} = \angle{TL'C} = 90 $ It's easy to check that $ME = MF = ML = ML'$ and $ \triangle {TEL} \sim \triangle{TFL'} $ so we can check that $ \triangle {ETF} \cong \triangle {L'TL} $ so $BT=CT$ and it get us $\angle{B} =\angle{C}$ , and the claim is proved . know from the claim we know $\frac{TE}{TF} =\frac {BE}{CF} = \frac {PE}{PF} $ so $(EF,PT)=-1$ , so $P , T , K $ are collinear $\blacksquare$ i dont find it's easy to check that $ME=MF=ML=ML'$, hope that someone can make it easy to understand.
01.05.2021 16:31
xst wrote: Arefe wrote: If $ AT $ is diameter of circle $AEF$ we claim that $\angle {TBA} =\angle {TCA} $ . Proof of the claim : if it's not happen ; get $L , L'$ such that $\angle{TBL} = \angle{TCA} , \angle{TCL'} = \angle{TBA} , \angle{TLB} = \angle{TL'C} = 90 $ It's easy to check that $ME = MF = ML = ML'$ and $ \triangle {TEL} \sim \triangle{TFL'} $ so we can check that $ \triangle {ETF} \cong \triangle {L'TL} $ so $BT=CT$ and it get us $\angle{B} =\angle{C}$ , and the claim is proved . know from the claim we know $\frac{TE}{TF} =\frac {BE}{CF} = \frac {PE}{PF} $ so $(EF,PT)=-1$ , so $P , T , K $ are collinear $\blacksquare$ i dont find it's easy to check that $ME=MF=ML=ML'$, hope that someone can make it easy to understand. oh, i understand, it's a litte lemma. but you don't need to make $L$ and $L'$, when you line $TB$, $TC$ and make their midpoints X, Y you can easily find that $\triangle MXE \cong \triangle MYF$, then we get $\angle XBE = \angle YCF$.
08.05.2021 21:47
K.N wrote: Let $ABC$ be an arbitrary triangle. Let $E,E$ be two points on $AB,AC$ respectively such that their distance to the midpoint of $BC$ is equal. Let $P$ be the second intersection of the triangles $ABC,AEF$ circumcircles . The tangents from $E,F$ to the circumcircle of $AEF$ intersect each other at $K$. Prove that : $\angle KPA = 90$ Here let take $F \in AB$ and $ E \in AC$ Let $M$ and $N$ midpoints of $BC$ and $EF$ respectively. Let $l$ the angle bisector of $\angle FPC$ (which is also the angle bissector of $\angle BPE$) Let $\phi$ the inversion centered at $P$ radius $\sqrt{PF.PC}$ followed by a reflection through $l$. Since there's a spiral similarity on P who takes $\triangle PEF$ on $\triangle PBC$ then $\phi (F)= C$ and $\phi (E)= B$. Let $M'$ the second intersection of $PK$ with $(PEF)$. So $\phi (M)= M'$. Let $N' \in (PBC)$ such that $PBN'C$ is harmonic quadrilateral. Then $\phi (N)=N'$. Since theres a spiral similarity centered at $P$ who takes $\triangle PFB$ on $\triangle PM'N'$, then $\angle PBF=\angle PN'M'$ which give us that $A, M', N'$ collinear. Let $A'$ the intersection of $EF$ and $BC$ ($\phi (A)=A'$). So we have $PA'MN$ cyclic, then $\angle MPA'= \angle MNA'= \frac{\pi}{2}$ so $\angle M'PA = \frac{\pi}{2}$ .
19.08.2021 03:42
I'll post my solution, which is similar to the solutions above. Let $M$ and $N$ be the midpoints of $BC$ and $EF$ respectively. Since $PK$ is the $P-$symmedian in $\triangle PEF$ and $P$ is the center of spiral similarity that maps $(E,N,F)\mapsto(B,M,C)$, $$\measuredangle KPF=\measuredangle EPN=\measuredangle(PE,PN)=\measuredangle(BE,MN).$$Since $APEF$ is cyclic, $$\measuredangle FPA=\measuredangle FEA=\measuredangle(EF,EA)=\measuredangle(EF,BE).$$Therefore, $$\measuredangle KPA=\measuredangle KPF+\measuredangle FPA=\measuredangle(BE,MN)+\measuredangle(EF,BE)=\measuredangle(EF,MN)=90^\circ.$$ [asy][asy] size(8cm); pointpen=black; pair A = dir(120), B = dir(210), C = dir(330); pair M = midpoint(B--C); pair[] D = IPs(CR(M, 1), B--A--C); pair E = D[1], F = D[0], N = midpoint(E--F); pair P = (C*E-B*F)/(C+E-B-F); path w = circumcircle(A, E, F); pair O = circumcenter(A, E, F); pair K = extension(E, (0,1)*(O-E)+E, F, (0,1)*(O-F)+F); D(A--B--C--cycle, red); DPA(w^^unitcircle, paleblue); D(E--K--F, orange); markscalefactor=.008; DPA(E--F^^M--N^^rightanglemark(M, N, E), lightblue); D("A", A, A); D("B", B, B); D("C", C, C); D("M", M, S); D("E", E, NE); D("F", F, NE); D("N", N, NE); D("P", P, P); D("K", K, S); [/asy][/asy]
09.07.2022 18:49
Let $N$ be midpoint of $EF$ and $NK$ meet $AB$ at $Z$ and $T$ be midpoint of arc $EF$ in $AEF$ and $S$ be midpoint of arc $BC$ in $ABC$. Note that $PK$ is symmedian in $PEF$ so $\angle FPK = \angle EPN$ so we need to prove $\angle EZN = \angle EPN$ or $PZNE$ is cyclic. Note that $\angle EBP = \angle ABP = \angle ACP = \angle FCP$ and $\angle AFP = \angle AEP$ so $PEB$ and $PFC$ are similar so $P$ sends $EF$ to $BC$. Note that $A,T,S$ are collinear so $PTS$ and $PEB$ are similar and Note that $PNT$ and $PMS$ are similar so $\angle PNZ = \angle PTA = \angle PEA = \angle PEZ$ so $PZNE$ is cyclic and we're Done.