Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ , $(f(a)+b) f(a+f(b))=(a+f(b))^2$
Problem
Source: Iranian 3rd round 2016 first Algebra exam
Tags: function, algebra, functional equation, number theory
13.08.2016 19:21
Amin12 wrote: Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ , $(f(a)+b) f(a+f(b))=(a+f(b))^2$ Let $f(1)=c$ then prove that $c+2|(2c+1)^2$ so $c+2|9$ so $c=1$ or $7$ and then prove $c=1$ and then by easy induction we get $f(x)=x$
13.08.2016 19:33
Amin12 wrote: Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ , $(f(a)+b) f(a+f(b))=(a+f(b))^2$ I suppose that, as usual on this forum, $\mathbb N$ is the set of positive integers ($0\notin\mathbb N$) Let $P(x,y)$ be the assertion $(f(x)+y)f(x+f(y))=(x+f(y))^2$ Let $a=f(1)$ and $b=f(2)$ $P(f(x),1)$$\implies$ $(f(f(x))+1)=\frac{(f(x)+a)^2}{f(f(x)+a)}$ $P(a,x)$ $\implies$ $(f(a)+x)=\frac{(a+f(x))^2}{f(a+f(x))}$ And so $f(f(x))=x+f(a)-1$ And since $P(x,x)$ $\implies$ $f(x+f(x))=f(x)+x$, we get $f(a)-1=0$ and $f(f(x))=x$ $\forall x$ Then $P(x,f(y))$ becomes new assertion $Q(x,y)$ : $f(x)+f(y)=\frac{(x+y)^2}{f(x+y)}$ Comparing then $Q(x,2)$ with $Q(x+1,1)$, we get $f(x+1)=f(x)+b-a$ and so $f(x)=(b-a)(x-1)+a$ Plugging this back in original equation, we get $a=1$ and $b=2$ and so $\boxed{f(x)=x\text{ }\forall x\in\mathbb N}$
14.08.2016 06:24
16.08.2016 21:39
Amin12 wrote: Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ , $(f(a)+b) f(a+f(b))=(a+f(b))^2$ This problem has solved for $f:\Bbb{R}^+\rightarrow \Bbb{R}^+$. Let $P(x,y)$ be the assertion $(f(a)+b)f(a+f(b))=(a+f(b))^2$. We get: $P(a,a)\rightarrow f(a+f(a))=a+f(a)$ So there exist $x_0 \in \Bbb{R}^+$ such that $f(x_0)=x_0$. Now we get: $P(x_0,x_0)\rightarrow f(2x_0)=2x_0$ $P(a+x_0,x_0)\rightarrow (f(a+x_0)+x_0)f(a+2x_0)=(a+2x_0)^2$ $P(a,2x_0)\rightarrow (f(a)+2x_0)f(a+2x_0)=(a+2x_0)^2$ $\Rightarrow f(a+x_0)=f(a)+x_0$ $P(a,x_0)\rightarrow (a+x_0)^2=(f(a)+x_0)f(a+x_0)=(f(a)+x_0)^2 \Rightarrow f(a)=a$ So we are done.
21.08.2016 16:19
from f(1)=1 we sub a=1 in F.E: (b+1)f(1+f(b))=(f(b)+1)^2. from f(1)=1. sub b=1 ==>f(2)=2 . assume f(t)=t. sub b=t==> f(t+1)=t+1
21.08.2016 16:37
open : we need what codition to f:R-->R (f(0)=0 )
22.09.2016 19:38
Quite strange solution: Let $P(x,y)$ be the assertion $(f(a)+b)f(a+f(b))=(a+f(b))^2$ $P(a,a) \rightarrow (f(a)+a)=f(f(a)+a)$ So there exist $n_0 \in \Bbb{R}^+$ such that $f(n_0)=n_0$. $P(n_0,n_0) \rightarrow f(2n_0)=2n_0$ By easy induction we get: $f(kn_0)=kn_0$ for all positive integer $k$ Assume that there exist positive integer $b$ such that $f(b) \ne b$ $P(kn_0,b)$ we get $(kn_0+b)f(kn_0+f(b))=(kn_0+f(b))^2$ Hence: $kn_0+b|(kn_0+f(b))^2$ By a well-known fact, $kn_0+b$ has infinitely many prime factors when $k$ runs, consider one of them is $p$ We have $p|kn_0+b$ and $p|kn_0+f(b)$ so $p|f(b)-b$. But there are infinitely many $p$ and $f(b)-b \ne 0$, contradiction! So, $\boxed{f(x)=x\text{ }\forall x\in\mathbb N}$
25.11.2016 18:17
Let $A(a,b)=(f(a)+b)f(a+f(b))=(a+f(b))^2$ be assertion of given FE. \begin{align*} A(a,b)\cdot (f(a)+b) \Longleftrightarrow (a+f(b))^2\cdot (f(a)+b)& =(f(a)+b)^2f(a+f(b))\\ &\stackrel{A(b,a)}{=} (f(b)+a)\cdot f(a+f(b))\cdot f(a+f(b))\\ &= (f(b)+a)\cdot f(a+f(b))^2\\ &\Longleftrightarrow (a+f(b))\cdot (f(a)+b)=f(a+f(b))^2\ . \ . \ . \ \bigstar\end{align*} Similarly from $A(b,a)\cdot (f(b)+a)$ we get $(a+f(b))\cdot (f(a)+b)=f(b+f(a))^2\ . \ . \ . \ \spadesuit$ \begin{align*} A(a,b)\cdot f(a+f(b))& \Longrightarrow (a+f(b))^2\cdot f(a+f(b))=(f(a)+b)\cdot f(a+f(b))^2\\ & \stackrel{\bigstar}{=}(f(a)+b)^2\cdot (a+f(b))\\ &\Longleftrightarrow (a+f(b))\cdot f(a+f(b))=(f(a)+b)^2\\ &\stackrel{\cdot (f(a)+b)}{\Longleftrightarrow} (f(a)+b)^3=(f(a)+b)\cdot (a+f(b))\cdot f(a+f(b))\\ & \stackrel{\bigstar}{=}f(a+f(b))^3\\ & \Longleftrightarrow f(a)+b=f(a+f(b))\ . \ . \ . \ \clubsuit\end{align*} Similarly we get from $A(b,a)\cdot f(b+f(a))$ and $\spadesuit$: $$f(b)+a=f(b+f(a))\stackrel{\bigstar\text{ and } \spadesuit}{=}f(a+f(b))\stackrel{\clubsuit}{=}f(a)+b:= Q(a,b)$$
) and note that in previous step we've also proved:$$f(b+f(a))\stackrel{\bigstar\text{ and } \spadesuit}{=}f(a+f(b))\ .\ .\ . \ \bigstar \bigstar$$. \begin{align*} Q(x+y,y)& \Longrightarrow f(y)+x+y=f(x+y)+y\\ &\Longleftrightarrow f(x+y)=f(y)+x\\ & \stackrel{\bigstar \bigstar\text{ and }\clubsuit}{=} f(f(y)+x)\\ &\stackrel{\text{f is injective}}{\Longleftrightarrow}x+y=f(y)+x\\ & \Longleftrightarrow \boxed{f(y)=y,\ \forall y\in \mathbb{N}} \end{align*}
31.12.2016 08:03
Let $P(x,y)$ denote the assertion that $(f(a)+b)f(a+f(b))=(a+f(b))^2$ for all naturals $a$ and $b$ . $P(1,1)$ gives us that $f(1)+1$ is a fixed point . Letting $a$ be any fixed point , observe that $P(a,a)$ gives us that $2a$ is also a fixed point . As $f(1)+1 \geq 2$ , we can take as large fixed points as we want . At this stage , fix a $b$ arbitrarily and choose a fixed point $x \geq |f(b)-b|^2+2017^{2017}$ . Then, $P(x,b)$ gives us that $(b+x)|(x+f(b)^2)$ which is equivalent to $(b+x)|(f(b)-b)^2$ . Now our tact choice of $x$ forces us that $b=f(b)$ . Now , as our choice of $b$ was arbitrary , we are done . EDIT: Happy New Year 's Eve to all fellow aops'ers
13.01.2017 09:19
good problem thanks a lot for solutions
15.01.2017 06:41
Let $P(x,y)$ be the assertion. $P(a,a) \to f(a+f(a))=a+f(a)---@ $ $P(a,b+f(b)) \to (f(a)+b+f(b))f(a+b+f(b))=(a+b+f(b))^2---(1)$ $P(a+b,b) \to (f(a+b)+b)f(a+b+f(b))=(a+b+f(b))^2---(2)$ By $(1)$ and $(2)$, we have $f(a+b)=f(a)+f(b)$ Then $@$ becomes $f(f(a))=a$ The original equation becomes $(f(a)+b)^2=(a+f(b))^2 \Rightarrow f(a)-a=constant$ But $f(a+b)=f(a)+f(b) \Rightarrow f(a)=a \forall a \in \mathbb{N}$
04.03.2017 13:20
Let $a,b$ be two fixed points $P(a,b):f(a+b)=(a+b)$ and hence the set of fixed point is closed under addition.$P(f(a),b): (f(f(a)+b)(f(a)+f(b))=(f(a)+f(b))^2$ switching $a\rightarrow b$ in the previous we have that $f(f(a))-a=\Delta$.$P(a,a) \implies$ $f(a)+a$ is fixed point and so $\Delta=0$ $\implies$ f is an involution.This allows a re-write ($b\rightarrow f(b)$) $$f(a+b)=\frac{(a+b)^2}{f(a)+f(b)}$$.Plugging $a=b=1$ gives $f(2)f(1)=2$ and so $f(1)+f(2)=3$.Plugging a=2,b=1 $f(3)(f(2)+f(1))=9$ and hence $f(3)=3$,plugging a=3,b=1 gives $f(4)(f(3)+f(1))=16$.If $f(1)=2$ this would imply $5\mid 16$ a clear contradiction and so $f(1)=1$ and $f(2)=2$.But as linear combination of fixed points is a fixed point and $(2,1)=1$ by Bezout's we get the $f(n)=n$ $\forall n$.
04.03.2017 16:42
My solution. Let $a=f(1)$, and let $P(a,b)$ denote the FE. Firstly observe f is injective, for if $f(x)=f(y)$, then $P(z,x), P(y,x)$ give $x=y$. $P(z-a,1)$ gives $$f(z-a) +1 = z^2/f(z) \ \ \ *$$. If $z$ is a prime, we can observe that $f(z)$ can only be $1$ or $z$ or $z^2$. For large $z$, the first and the last dont hold true, the first one by injectivity and the second one by $*$. Call such primes as a-primes. By $*$ again, for a-primes $p$, $f(p-a)=p-1$. Let $q,r$ be a-primes, $q>r$. By $P(q-r, r)$, $f(q-r)=q-r$. $P(p-a, q-r)$ for an a-prime $p$ gives that $p+q-r-1|(p-a+q-r)^2$, or what is equivalent, $(a-1)^2 \equiv 0 \pmod { (p+q-r-1)}$. So by making $q$ large enough, $a=1.$ By $*$ and induction, we are done.
17.01.2018 21:02
put a,a; then f(a+f(a))=a+f(a) (1) put a,b+f(b); then (f(a)+b+f(b))*f(a+b+f(b))=(a+b+f(b))*(a+b+f(b)) (2) put a+b,f(b); then (f(a+b)+f(b))*f(a+b+f(b))=(a+b+f(b))*(a+b+f(b)) (3) (2),(3) then f(a+b)=f(a)+b and then easy
18.01.2018 08:52
Let $P (a,b) $ denote the assertion in the question and let $f (1)=c $. $P (f (a),1) $ & $P (c,a) $ $\implies f (f (a))+1=a+f (c) $ .....$(1) $ $P (1,1): f (c+1)=c+1$ ..... $(2) $ $(1) $ & $(2) $ $\implies f (c)=1$. $P (1,c): cf (2)=2$. If $c=2$, then by computing $f (6) $, we get a contradiction. If $c=1$, then induction gives $f (n)=n $ $\forall n\in\mathbb {N} $, which is indeed the required function.
26.07.2018 10:08
Let denote the assertion $a=b \implies f(a+f(a))=a+f(a)$ so there exist $f(x_0)=x_0$ $p(f(a),x_0) \implies f^2(a)+x_0=f^2(x_0)+a \implies f^2(a)=a$ so the function is surjective and injective! $p(a,f(b)) \implies (f(a)+f(b)).f(a+b)=(a+b)^2$ and then putting a=b=1 implies that $f(2).2.f(1)=2$ so $f(1)=1$ or $2$ and not let $f(1)=2, f(2)=1$ and then we can easily see that $f(3)=3$ and then putting $a=3, b=1$ in $(f(a)+f(b)).f(a+b)=(a+b)^2$ is contradiction! so $f(1)=1, f(2)=2$ let $f(t)=t, f(k)=k \implies f(t+k)=t+k$ so because of $f(1)=1, f(2)=2$ we're done with induction!
28.04.2019 08:18
Nice problem in my opinion. Amin12 wrote: Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ , $(f(a)+b) f(a+f(b))=(a+f(b))^2$ $ $ We claim that $f(n) \equiv n \forall n \in \mathbb{N}$ is the only solution to the givn functional equation. $ $ Begin by noticing that $f(n)=n$ trivially satisfies the equation. Now let $P(a,b)$ denote the proposed assertion. $ $ ($\bigstar$) $P(f(a) , b)$: \begin{align*} f(f(a) + b ) \cdot f(f(a)+f(b)) & = (f(a) + f(b))^2\\ & = (f(f(b))+a) \cdot f(f(a) + f(b))\\ \end{align*}Since $f(f(a)+f(b)) \neq 0 \implies f(f(a)) + b = f(f(b)) + a \implies f(f(n)) = n + k \forall n \in \mathbb{N}$ and some integer $k$. ($\bigstar \bigstar$)$ P(a,a)$: $f(a+f(a)) \cdot (a +f(a)) = ( a + f(a))^2 \iff f(a +f(a)) = a +f(a) \forall a \in \mathbb{N}$. Applying $f$ on both sides yields: $$f(f(a +f(a))) = f(a +f(a)) \iff a + f(a) + k = f(a+f(a)) = a + f(a) \iff k = 0$$$ $ Therefore $f$ is a bijective function. ($\bigstar \bigstar \bigstar$)$P(a, f(b))$: $(f(a)+f(b))\cdot f(a+f(f(b))) = (a + f(f(b))^2 \implies (f(a)+f(b)) \cdot \underbrace{f(a+b) = (a+b)^2}_{f(f(n))=n} \forall a,b \in \ \mathbb{N}$ $ $ Now, consider the last equation and call it $Q(a,b)$. $Q(1,1): f(1) \cdot f(2) = 2$. So we have two cases: (i) $f(1)=1$ and (ii)$f(2)=1$. Suppose $f(1)=2$. Then, $Q(1,3) : f(4) \cdot 4 = 16 \implies f(4) = 4$. But $Q(2,2) : f(4) \cdot 2 = 16 \implies f(4) = 8$. Contradiction. $ $ Hence $f(1) = 1$ and $f(2) = 2$ and by an easy induction we see that $\boxed{f(n) = n \forall n \in \mathbb{N}}$ is indeed a solution.
05.06.2019 14:50
Amin12 wrote: Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ , $(f(a)+b) f(a+f(b))=(a+f(b))^2$ I think it's a very simple problem. By the way, we will show that the only possible answer is: $\boxed{f(n) = n \forall n \in \mathbb{N}}$ Firstly, let $P(a,b)$ the assertion: $(f(a)+b) f(a+f(b))=(a+f(b))^2$ for each natural $a$ and $b$. By $P(1,1)$ we will conclude that: $f(f(1)+1)=f(1)+1$. Also by $P(1,f(1)+1)$ we will deduce that $(2f(1)+1)(f(1)+2)=((f(1)+2)^{2})$ and since $f(f(1)+1)=f(1)+1$, we will reach to $2f(1)+1=f(1)+2$ so $f(1)=1$ Finally, by an easy induction we will be done by the problem. Provided that: $f(1)=1,...,f(k)=k$ And by $P(k,1)$ kill(!) the problem. $(f(k)+1).f(k+1)=(k+1)^{2}$ As $f(k)=k$, it follows that $f(k+1)=k+1$.
06.06.2019 12:06
let a=b then you can find that f(x)=x
05.01.2021 03:44
Nice problem $\color{black}\rule{25cm}{1pt}$ The only answer is $f(x)=x$ for all natural numbers $x$. Let $P(a,b)$ be the given assertion. Suppose that we have some $x$ and $y$ such that $f(x)=f(y)$. Then we must have that $P(a,x)=P(a,y)$ Comparing this we have that $f(a)+x=f(a)+y$, which implies that $x=y$, thus we have that $f$ is injective. We choose $a$ and $b$ such that $a+f(b) = p$ is prime. Since we have that $f(a)+b > 1$ this implies two possible values: \[f(p) = p \; \text{or} \; f(p)=1\]Let $S_1$ be the set of primes such that $f(p)=p$ and let $S_2$ be the set of primes such that $f(p)=1$. Since $f$ is injective we have that $\mid S_2 \mid \leq 1$. From $P(a,a)$ we have that $f(a+f(a))=a+f(a)$, so now let's set $a \in S_1$ to get that $f(2a)=2a$. From $P(a,2a)$ we have that $f(3a)=3a$, where $a \in S_1$. By induction we get that $f(na)=na$, where $n$ is an arbitrary natural number and $a \in S_1$. So now let's set $a$ to be the only element of $S_2$ and let $b$ be a composite number divisible by $(a-1)$ then we have that: $$(1+b)f(a+b)=(a+b)^2$$but notice that $(a+b,1+b)=1$, since $a-1 \mid b$. This implies that either all of primes are in $S_1$ or in $S_2$, but since we have that $f$ is injective we have that all the primes are in $S_1$. This implies that for every natural $x > 1$ we have that $f(x)=x$. Let $f(1)=c$. From $P(1,b)$ we have that: $$(b+c)f(1+f(b))=(b+1)^2$$since we have that $f(b)+1 > 1$ we have that $f(f(b)+1)=f(b)+1=b+1$, this implies that: $$b+c=b+1$$thus giving us that $c=1$. This gives us that for all natural numbers $x$ we have that $f(x)=x$.
05.01.2021 10:04
when you solve FEs how do you know you've found all the solutions? In an olympiad is just finding and proving ONE solution enough for full marks?
23.04.2021 09:49
Seems pretty short to me.
23.04.2021 17:34
Let $f(1)=c$ and let $P(a,b)$ denote the assertion. Let $f(x)=f(y)$ for some $x,y \in \mathbb{N}$. Comparing $P(a,x)$ and $P(a,y)$ gives $x=y$ so $f$ is injective. $P(1,a)\implies (a+f(1))\cdot f(f(a)+1) = (f(a)+1)^2 \implies a+f(1) \mid (f(a)+1)^2$. $(1)$ $P(1,1)\implies f(c+1) = c+1$. Plugging $a=c+1$ in $(1)$ we get $2c+1\mid (c+2)^2 \implies c\in \{1,4\}$. If $c=4$, then we get $f(5)=5$. $P(1,5) \implies f(6)=4$ but this contradicts the injectivity of $f$. So $f(1)=1$. $P(a,1)\implies f(a+1) = \frac{(a+1)^2}{f(a)+1}$ and by a simple induction, we get $f(n)=n \forall n \in \mathbb{N}$.
06.07.2021 12:17
Answer: $f(n)=n \ \ \forall n\in \mathbb{N}.$ Proof: It's easy to see that the identity function works. Let $P(a,b)$ denote the given assertion, Claim 1: There is a fixed point. Proof: \[P(a,a)\implies f(a+f(a))=a+f(a). \quad \square\]Claim 2: $f(f(n))=n \ \ \forall n \in \mathbb{N}.$ Proof: We have \[P(f(a),1)\implies (f(f(a))+1)f(f(a)+f(1))=(f(a)+f(1))^2\]and \[P(f(1),a)\implies (f(f(1))+a)f(f(a)+f(1))=(f(a)+f(1))^2\]which imply $f(f(a))=a+C$ where $C$ is an integer. But from Claim 1, we know there is a fixed point, so $C=0$ and we have proved the claim. $\square$ Claim 3: $f(1)=1.$ Proof: We have \[P(1,f(1)) \implies f(1)f(2)=2.\]If $f(2)=1$ and $f(1)=2,$ then \[P(2,2) \implies f(3)=3\]but \[P(1,3) \implies f(4)=\frac{16}{5}\]which is impossible. So, $f(2)=2$ and $f(1)=1$. Claim 4: $f(n)=n \ \ \forall n \in \mathbb{N}.$ Proof: We have \[P(a,1) \implies f(a+1)=\frac{(a+1)^2}{f(a)+1}\]and since $f(1)=1,$ by induction, we have $f(a)=a \ \ \forall a\in \mathbb{N}. \quad \blacksquare$
06.08.2021 21:09
redacted
07.08.2021 15:11
rama1728 wrote:
@above, I think your solution is wrong. Indeed, for any $n\in\mathbb{N}_k$ one can find $x$ and $y$ such that $n=x+f(y).$ However, in order for any pair $x,y\in \mathbb{N}_k$ to satisfy $xf(y)=y^2$ then for any $x,y\in \mathbb{N}_k$ there must exist $a$ and $b$ which simultaneously satisfy $b+f(a)=x$ and $a+f(b)=y.$ This clearly does not always hold. For example, take $x=k+1$ and $y=c.$ Since $b+f(a)=x$ and $\forall n, \ f(n)\geq k$ then we must have $b=1.$ But we also have $a+f(b)=a+f(1)=c.$ Thus, any $c\in\mathbb{N}_k$ must be greater than $f(1)$ which doesn't have to hold.
07.08.2021 15:22
oVlad wrote: wer wrote: Nice one! Nice... what? I think they mean the problem.
23.03.2022 05:17
We claim that $f(a)=a$ is the ONLY function that works. Let $P(a,b)$ the assertion of this F.E. Claim 1: $f$ is injective Proof: if there existed $x,y$ such that $f(x)=f(y)$ then by $P(a,x)-P(a,y)$ $$f(a)+x=f(a)+y \implies x=y \implies f \; \text{injective}$$Claim 2:$f(p)=p$ for a prime $p$ big enough. Proof: Set a really big prime $p$ and use $P(p-f(b),b)$ $$(f(p-f(b))+b)f(p)=p^2 \implies f(p) \mid p^2$$Now clearly $f(p) \ne p^2$ so either $f(p)=1$ or $f(p)=p$, but since we have $f$ injective we have that if there existed $p$ big such that $f(p)=1$ then it would be unique, so we ignore thst $p$ and take the rest of big primes $p$ that hold $f(p)=p$. Finishing: Now back to the F.E. by $P(p,a)$ where $p$ is such a big prime $$p+a \mid p^2+2pf(a)+f(a)^2 \implies p+a \mid (f(a)-a)(f(a)+a+2p) \implies p+a \mid (f(a)-a)^2 \implies f(a)=a$$Hence the unique function that works is $\boxed{f(a)=a \; \forall a \in \mathbb N}$ thus we are done
25.03.2022 09:18
$P(a,a) : f(a+f(a)) = a + f(a)$. $P(a,b+f(b)) : (f(a) + b + f(b))f(a+b+f(b)) = (a + b + f(b))^2$. $P(a+b,b) : (f(a+b) + b)f(a+b+f(b)) = (a + b + f(b)^2$. so we have $(f(a) + b + f(b)) = (f(a+b) + b) \implies f(a+b) = f(a) + f(b)$ so $f$ is a cauchy function which implies $f(a) = ca$. $(ca + b)(a + bc) = (a + bc)^2 \implies a + bc = b + ca \implies a(c-1) = b(c-1) \implies c = 1$ so $f(a) = a$. Answers : $f(a) = a$.
09.07.2022 20:30
another solution $P(1,1) : (f(1) + 1)f(1+f(1)) = (1+f(1))^2 \implies f(1+f(1)) = 1+f(1)$ so there exists $k$ such that $f(k) = k$ $P(k,k) : f(2k) = 2k$ and $P(2k,k) : f(3k) = 3k$ and now with induction we have $f(nk) = nk$. Claim $: f(1) = 1$. Assume $f(1) = c$ $P(f(a),k) , P(f(k),a) : f(f(a)) + k = f(f(k)) + a = k + a \implies f(f(a)) = a$ we have $f(1) = c$ so $f(f(1)) = f(c) = 1$. $P(1,c) : 2cf(2) = 4 \implies cf(2) = 2$ if $c = 2$ then $f(f(1)+1) = f(3) = f(1) + 1 = 3$ but $P(1,3) : f(4)$ is not Natural so contradiction so $c = 1$ so $f(1) = 1$. we had that if $f(k) = k$ then $f(nk) = nk$ so now that $f(1) = 1$ we have $f(n) = n$.
04.11.2022 09:15
Let $P(x,y)$ denote the assertion $(f(x)+y)f(x+f(y))=(x+f(y))^2$. We solve this for $f:\mathbb R^+\to \mathbb R^+$. $P(x,x)$ gives $f(x+f(x))=x+f(x)$. Comparing $P(x+y,y)$ and $P(x,y+f(y))$ shows $f$ is additive, so $f(x)=kx$. Checking gives $k=1$ works only.
31.12.2022 02:38
Firstly, $f$ is injective (otherwise, let $f(x)=f(y)$ and compare $P(a, x), P(a, y)$). Now, $P(p-f(x), x)$ implies that $f(p)=p$ for all sufficiently large primes $p$ ($f(p)=1$ holds for at most one prime due to the injective property) and thus $f(p-f(x))=p-x$. Take another large prime $q$ and apply this once more: $f(p-q+x)=f(p-f(q-f(x))=p-q+f(x)$, so $f(x+c)=f(x)+c$ for $p-q=c$. Now, comparing $P(x+c,y)$ and $P(x, y)$ gives that $(f(x)+y)+f(x+f(y))=2(x+f(y))$. The last two numbers have product $(x+f(y))^2$, so $f(x)+y=x+f(y)$, which implies that $f(x)=x+k$ and substituting back gives that $f(x)=x$ is the only solution.
15.02.2023 21:35
$p(f(a),1),p(f(1),a)\Rightarrow f(f(a))=a+\alpha$. by comparing $p(a,f(2)),p(a+1,f(1))$ we have $f(a+1)=f(a)+c$ and so f is linear, $f(x)=ax+b(\forall x \in \Bbb{N})$ plugging this in the equation we get $f(x)=x(\forall x)$
28.12.2024 13:14
By comparing \( P(f(a), b) \) and \( P(f(b), a) \), we deduce that \( f(f(a)) + b = a + f(f(b)) \). From this, \( f(f(a)) - a \) must take a constant value, which we denote as \( c \). From \( P(a, a) \), we find \( f(a + f(a)) = a + f(a) \). Therefore, \( a + f(a) - c = f(f(a + f(a))) = f(a + f(a)) = a + f(a) \), which implies \( c = 0 \). Thus, \( f(f(a)) = a \), and \( f \) is bijective. Now, consider \( P(a, f(b)) \). Notice that \( (f(a) + f(b)) f(a + b) = (a + b)^2 \). From \( P(1, f(1)) \), we have \( f(1) f(2) = 2 \). Assume \( f(1) = 2 \) and \( f(2) = 1 \). Using \( P(1, f(2)) \), we find \( f(3) = 3 \). Next, from \( P(1, f(3)) \), we find \( f(4) = \frac{16}{5} \), which is invalid. Therefore, \( f(1) = 1 \). Assume \( f(n - 1) = n - 1 \). From \( P(1, f(n - 1)) \), we deduce \( n f(n) = n^2 \), which implies \( f(n) = n \). By induction, we have shown that \( f(n) = n \) for all \( n \).