Problem

Source: India IMO Training Camp 2016, Practice 2, Problem 3

Tags: combinatorics



An equilateral triangle with side length $3$ is divided into $9$ congruent triangular cells as shown in the figure below. Initially all the cells contain $0$. A move consists of selecting two adjacent cells (i.e., cells sharing a common boundary) and either increasing or decreasing the numbers in both the cells by $1$ simultaneously. Determine all positive integers $n$ such that after performing several such moves one can obtain $9$ consecutive numbers $n,(n+1),\cdots ,(n+8)$ in some order. [asy][asy] size(3cm); pair A=(0,0),D=(1,0),B,C,E,F,G,H,I; G=rotate(60,A)*D; B=(1/3)*D; C=2*B;I=(1/3)*G;H=2*I;E=C+I-A;F=H+B-A; draw(A--D--G--A^^B--F--H--C--E--I--B,black);[/asy][/asy]