Problem

Source: 2016 ELMO Problem 3

Tags: geometry, rectangle, analytic geometry, combinatorics



In a Cartesian coordinate plane, call a rectangle $standard$ if all of its sides are parallel to the $x$- and $y$- axes, and call a set of points $nice$ if no two of them have the same $x$- or $y$- coordinate. First, Bert chooses a nice set $B$ of $2016$ points in the coordinate plane. To mess with Bert, Ernie then chooses a set $E$ of $n$ points in the coordinate plane such that $B\cup E$ is a nice set with $2016+n$ points. Bert returns and then miraculously notices that there does not exist a standard rectangle that contains at least two points in $B$ and no points in $E$ in its interior. For a given nice set $B$ that Bert chooses, define $f(B)$ as the smallest positive integer $n$ such that Ernie can find a nice set $E$ of size $n$ with the aforementioned properties. Help Bert determine the minimum and maximum possible values of $f(B)$. Yannick Yao