Problem

Source: Russia 95

Tags: ratio, number theory, prime factorization



Is it possible to place $1995$ different natural numbers along a circle so that for any two of these numbers, the ratio of the greatest to the least is a prime? I feel that my solution's wording and notation is awkward (and perhaps unnecessarily complicated), so please feel free to critique it:

HIDE: Click to reveal hidden text Suppose that we do have such a configuration $a_{1},a_{2},...a_{1995}$. WLOG, $a_{2}=p_{1}a_{1}$. Then \[\frac{a_{2}}{a_{3}}= p_{2}, \frac{1}{p_{2}}\] \[\frac{a_{3}}{a_{4}}= p_{3}, \frac{1}{p_{3}}\] \[... \] \[\frac{a_{1995}}{a_{1}}= p_{1995}, \frac{1}{p_{1995}}\] Multiplying these all together, \[\frac{a_{2}}{a_{1}}= \frac{\prod p_{k}}{\prod p_{j}}= p_{1}\] Where $\prod p_{k}$ is some product of the elements in a subset of $\{ p_{2},p_{3}, ...p_{1995}\}$. We clear denominators to get \[p_{1}\prod p_{j}= \prod p_{k}\] Now, by unique prime factorization, the set $\{ p_{j}\}\cup \{ p_{1}\}$ is equal to the set $\{ p_{k}\}$. However, since there are a total of $1995$ primes, this is impossible. We conclude that no such configuration exists.