Find all functions $f :\Bbb{ R}\to \Bbb{Z}$ such that $$\left( f(f(y) - x) \right)^2+ f(x)^2 + f(y)^2 = f(y) \cdot \left( 1 + 2f(f(y)) \right),$$for all $x, y \in \Bbb{R}.$
Problem
Source:
Tags: algebra, functional equation
01.05.2016 23:47
02.05.2016 00:15
(never mind this doesn't work)
02.05.2016 00:20
No, the function $f(x)=\lfloor x\rfloor$ is a non-constant function that maps reals to integers...
03.05.2016 10:35
Tintarn wrote: If $a=1$, then $P(x,0)$ implies $f(1-x)^2+f(x)^2=2$ and hence $f(x)^2=1$ for all $x$. But $P(x,0)$ implies $f(1-x)^2+f(x)^2=2f(1)$
03.05.2016 10:46
KMO1 wrote: But $P(x,0)$ implies $f(1-x)^2+f(x)^2=2f(1)$ We can find $f(1)=1$ by doing the next step $P(0,0)$ implies $f(1)^2+1=2f(1)$ so $f(1)=1$. Hence, $f(1-x)^2+f(x)^2=2f(1)=2$.
10.05.2016 01:25
Tintarn wrote:
How does $f(f(y)) = 1$ imply that $f(x) = 1$ for all x? Couldn't $f(y) = -1$, and then $f(f(y)) = 1$ for some $y$?
19.08.2016 15:59
Khazix wrote: Tintarn wrote:
How does $f(f(y)) = 1$ imply that $f(x) = 1$ for all x? Couldn't $f(y) = -1$, and then $f(f(y)) = 1$ for some $y$? I can explain for you : from euation f(y)(1+f(f(y))) =3 and f(f(y))=1 ==> f(y)=1
28.02.2017 07:34
30.07.2022 15:59
Let $P(x,y)$ denote the given assertion. We claim that all solutions are $f\equiv 1$ and $f\equiv 0.$ Note that $P(0,0)$ implies $f(0)-f(0)^2=(f(f(0))-f(0))^2\geq 0$ hence $f(0)\in \{0,1\}.$ Obviously $f\equiv 0$ if $f(0)=0.$ Consider $f(0)=1.$ Then $P(0,0)$ gives $f(1)=0.$ Now $P(x,0)$ implies $f(x)^2+f(1-x)^2=2$ since working in $\mathbb{Z}$ we have $f(x)=\pm 1.$ Finally $P(x,y)$ implies $f(f(y))\in \{-2,1\}$ and thus $f(f(y))=1$ and we are done.
06.12.2024 21:20
Let \( P(x,y) \) denote the original assertion. \( P(0,0) \) gives \[ f(f(0))^2 + f(0)^2 + f(0)^2 = f(0)(1+f(f(0))). \]For simplicity, let \( f(0) = a \) and \( f(f(0)) = b \). Then the last equation becomes \[ b^2 - 2ab + 2a^2 - a = 0. \]Treat this as a quadratic equation in \( b \). Taking the determinant \( D = 4a^2 - 4(2a^2 - a) = 4a(1 - a) \). Since \( D \geq 0 \) and \( a(1 - a) \leq \frac{1}{4} \), we obtain \( a(1 - a) = 0 \). Hence, let's explore 2 cases: $\textbf{Case 1:}$ \( a = 0 \). In this case, \( f(0) = 0 \). Then \( P(x,0) \) gives \[ f(-x)^2 + f(x)^2 = 0 \quad \text{for all } x \in \mathbb{R}. \]This gives us a solution of \( \boxed{f(x) = 0} \) for all \( x \in \mathbb{R} \). $\textbf{Case 2:}$ \( a = 1 \). Then the quadratic equation above gives \( b = 1 \). So, \( f(0) = 1 \) and \( f(1) = 1 \). Again, \( P(x,0) \) gives \[ f(1 - x)^2 + f(x)^2 + 1 = 3 \quad \text{for all } x \in \mathbb{R}. \]Since we are in \( \mathbb{Z} \), we get \( \boxed{f(x) = 1} \) for all \( x \in \mathbb{R} \).