Let $ABCD$ be a quadrilateral circumscribed on the circle $\omega$ with center $I$. Assume $\angle BAD+ \angle ADC <\pi$. Let $M, \ N$ be points of tangency of $\omega $ with $AB, \ CD$ respectively. Consider a point $K \in MN$ such that $AK=AM$. Prove that $ID$ bisects the segment $KN$.
Problem
Source: Polish National Olympiad 2016 P2- Final Round
Tags: circumscribed quadrilateral, geometry
08.04.2016 23:12
Hello. My solution. [asy][asy]import graph; size(9cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -8.435245042437634, xmax = 12.21296844940993, ymin = -6.185472488524358, ymax = 5.497069355547282; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((-0.003750461477921458,-2.8173578246173063)--(-3.7677155720410602,0.9270506794704099)--(1.6059446206206847,2.590945209683892)--(2.139151167496353,-0.6969115772172044)--cycle, aqaqaq); /* draw figures */ draw(circle((0.,0.), 2.)); draw((-0.003750461477921458,-2.8173578246173063)--(-3.7677155720410602,0.9270506794704099), uququq); draw((-3.7677155720410602,0.9270506794704099)--(1.6059446206206847,2.590945209683892), uququq); draw((1.6059446206206847,2.590945209683892)--(2.139151167496353,-0.6969115772172044), uququq); draw((2.139151167496353,-0.6969115772172044)--(-0.003750461477921458,-2.8173578246173063), uququq); draw((-1.410525261274075,-1.4178922692883624)--(3.2368374449767403,0.968526090113257)); draw((1.6059446206206847,2.590945209683892)--(3.2368374449767403,0.968526090113257)); draw((-0.5915682074235653,1.9105096325236546)--(-1.410525261274075,-1.4178922692883624)); draw((-0.5915682074235653,1.9105096325236546)--(3.2368374449767403,0.968526090113257)); draw((-0.5915682074235653,1.9105096325236546)--(1.9742071051475258,0.32016606001421505)); draw((-3.7677155720410602,0.9270506794704099)--(0.,0.)); /* dots and labels */ dot((0.,0.),linewidth(3.pt) + dotstyle); label("$I$", (-0.1876033751113048,-0.40242021355201696), NE * labelscalefactor); dot((-0.5915682074235653,1.9105096325236546),linewidth(3.pt) + dotstyle); label("$P$", (-0.9250395712487178,1.9651381003628337), NE * labelscalefactor); dot((-1.410525261274075,-1.4178922692883624),linewidth(3.pt) + dotstyle); label("$N$", (-1.9729752183913574,-1.5473869391337889), NE * labelscalefactor); dot((1.9742071051475258,0.32016606001421505),linewidth(3.pt) + dotstyle); label("$M$", (2.218767370179201,0.16036004139495572), NE * labelscalefactor); dot((1.6059446206206847,2.590945209683892),linewidth(3.pt) + dotstyle); label("$A$", (1.6753933309200544,2.702574296500246), NE * labelscalefactor); dot((2.139151167496353,-0.6969115772172044),linewidth(3.pt) + dotstyle); label("$B$", (2.218767370179201,-0.9846066841868163), NE * labelscalefactor); dot((-0.003750461477921458,-2.8173578246173063),linewidth(3.pt) + dotstyle); label("$C$", (0.23933337002088167,-3.0804779784720937), NE * labelscalefactor); dot((-3.7677155720410602,0.9270506794704099),linewidth(3.pt) + dotstyle); label("$D$", (-4.010627865613157,0.47085949240018204), NE * labelscalefactor); dot((3.2368374449767403,0.968526090113257),linewidth(3.pt) + dotstyle); label("$K$", (3.4801713898879334,0.8395775904688882), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] Let $P,$ be the tangency point of the $\omega $ with $DA$.We have $AK=AM=AP$,thus $A$ is the circumcenter of $\triangle{MPK}$.Hence $\angle{MPK}=\frac{1}{2}\angle{MAK} \ (1)$. Also,the alternate chord theorem gives $\angle{MPN}=\angle{NMB}=\angle{AMK}\overset{\angle{AMK}=\angle{AKM}}\Rightarrow \angle{MPN}=90^{\circ}-\frac{1}{2}\angle{MAK} \ (2)$. $(1),(2)\Rightarrow PK\perp PN$.We also have $DP=DN$ and $IP=IN$ so $ID\perp PN$ and $ID$ bisects $PN$. It follows that $ID\parallel PK$ and $ID$ bisects $PN$ so it passes as well through the midpoint of $KN$ ,q.e.d.
11.04.2016 00:30
let $X$ be the tangency point of $\omega$ with $AD$ $Y$ the antipode of $N$ $K'$=$(XY)\cap(MN)$ $U$=$(XN)\cap(MY)$ $T$=$(DI)\cap(MN)$ Using Pascal on $NMMYXX$ gives $K'$,$A$ and $U$ collinear more than that simply by inversion or isogonalty $A$ is the midpoint of $UK'$ also $\angle{UMK'}=90=\angle{UXK'}$ so $KMXU$ are concyclic and $AK'=AM=AX=AU$ therfore $K'=K$ now $\angle{KXN}=90$ and $TN=TX$ gives $TN=TK$
13.04.2016 01:17
$AB \cap DC = R $ $\omega \cap AD = Q$ $DI \cap KN = T$ $DI \cap AK = L$ Since $ AK = AM $ and $ MR= NR$ we have $ \angle{MKA} = \angle{AMK}=\angle{RMN}=\angle{MNR}$ so $AK \parallel DC$ and then it follows that $\angle{ADL}=\angle{TDN}=\angle{TLK}$ so $ AD=AL$. $AK=AM=AQ$ so $KL=QD=DN$. Since $ \angle{TLK}=\angle{TDN} $ , $ \angle{TKL}=\angle{DNT}$ and $ KL=DN$ triangles $KLT$ and $ DTN$ are congruent so $ KT=TN$.
12.08.2016 05:00
Let $DN \cap AM = X$, $DI \cap AK = L$. Easily seen that $DN \parallel AK$, so $A, K, L$ are collinear. Let $X$ be the tangency point of $DA$, then $DN = DA-DX = AL-AK =KL$, so $DNLK$ is a parallelogram. $DL$ and $NK$ bisect each other.
21.02.2017 06:21
Clearly it suffices to show that $ID \parallel PK$, or just $\angle NPK = 90$. Note that $AP = AM = AK$, so $A$ is the circumcenter of $PMK$. We have $\angle AMK = 180-\angle PMA - \angle PMN = 180- \angle PNM - \angle PMN = \angle NPM$. Now, $\angle NPK = \angle NPM + \angle MPK = \angle AMK + \frac{1}{2} \angle MAK = 90$, so we are done.
21.06.2018 04:56
Extend $AB$ and $CD$ past $B,C$ to intersect at $X$. Let $DI$ intersect $MN$ at $J$. By a well-known lemma, $\angle JIA=\frac{\pi}{2}$. Also notice that since $\angle XMN=\angle AMK$ and $\triangle XMN, \triangle AKM$ are both isosceles, then $AK \parallel XD$. Let $AJ$ intersect $XD$ at $T$. The problem is now equivalent to proving that $J$ is the midpoint of $AT$, but this is immediate: $DJ$ is both altitude and angle-bisector in $\triangle ADT$, so $\triangle ADT$ is isosceles hence $J$ is also the midpoint of $AT$.
21.06.2018 05:17
Pinionrzek wrote: Let $ABCD$ be a quadrilateral circumscribed on the circle $\omega$ with center $I$. Assume $\angle BAD+ \angle ADC <\pi$. Let $M, \ N$ be points of tangency of $\omega $ with $AB, \ CD$ respectively. Consider a point $K \in MN$ such that $AK=AM$. Prove that $ID$ bisects the segment $KN$. By right-angles on the intouch chord lemma; we know that if $L=DI \cap MN$ then $AL \perp DL \implies AL \parallel NP$. Now let $MN \cap AD=T$ and $\infty$ be the infinity point on line $MN$. Note that $\angle CNM=\angle BMN=\angle AKN$ so $AK \parallel DN$. Observe that $N(P,T, A,D)=-1$; now observe that $AL \parallel NP, NT \parallel A\infty, NA \parallel NA, ND \parallel AK$ proving $A(\infty,L,N,K)=-1$; hence $L$ bisects $KN$.
03.08.2019 13:39
let $AB \cap CD=Z$ $X=DI \cap MN$ $DI \cap MN=X$ $AX \cap DN=Y$ and let the reflection of$ N$ over$ X$ is $K'$ we will prove that $K=K'$ it's well-known that $PX $is perpendicular to $AX \implies AX=XY \implies AK'YN $ is parallelogram we have $\angle ZMN=\angle K'MA$ and $\angle ZNM=\angle AK'M \implies AK'=AM \implies K=K'$ and we done
13.08.2020 10:00
let $L$ be the midpoint of segment$AD$ and $S$ be the intersection of $DI$ , $MN$ . First of all notice that$AK||DC$ and if problem be true then we have $LS=LA=LD \implies $ triangle $\triangle ASD$ is right. which it easily implies from that claim: claim:$ISMA$ cyclic. proof: $\angle SIA + \angle SMA=180$ ! $\blacksquare$
02.04.2022 22:34
Let $\omega$ touch $\overline{BC},\overline{AD}$ at $E,F$ and let $X=\overline{AB}\cap\overline{KN}.$ Since $A$ is the center of $(KMF),$ $$\angle MKF=\tfrac{1}{2}\angle MAF=90-\angle AFM=90-\angle FNM=\angle NXI$$and $\overline{DI}\parallel\overline{KF}.$ As $\overline{DI}$ bisects $\overline{FN},$ we know $\overline{DI}$ also bisects $\overline{KN}.$ $\square$