Find all pairs (n;p) of natural numbers n and prime numbers p, satisfying the equation p(p−1)=2(n3+1)
Problem
Source:
Tags: number theory, prime numbers
31.03.2016 17:50
Lemma: if ab=cd and gcd and a,b,c,d \ne 1 then a=c,b=d or a=d,b=c case 1: n^2-n+1 \vdots 2 \Rightarrow p(p-1)\vdots 4 \Rightarrow p=2 \Rightarrow n=0 case 2: n^2-n+1 \not\vdots 2 if n+1 \not\vdots 3 then \gcd(2(n+1),n^2-n+1)=\gcd(2(n+1),3n)=1 and we have \gcd(p,p-1)=1 so use the lemma we have p-1=2(n+1) and p=n^2-n+1 or p-1=n^2-n+1 and p=2(n+1) \Rightarrow n^2-3n-1=1 or -1 if n+1\vdots 3 then n=3k+2 put it in the equation and do similarly to case 2
31.03.2016 17:57
Quote: case 1: n^2-n+1 \vdots 2 \Rightarrow p(p-1)\vdots 4 \Rightarrow p=2 \Rightarrow n=0 from p(p-1)\vdots 4 it doesn't follow that p=2 because it is enough that p=4k+1 and by Dirichlet theorem there exists infinitly many such primes
31.03.2016 18:00
Also, the lemma is wrong: 6\cdot 7=3\cdot 14
31.03.2016 19:29
If p=2, n is not a natural number...
31.03.2016 19:35
Case 1) p\leq n+1 We getLHS \leq n^2+n, so 2(n^3+1) \leq n^2+n which is false when n\in \mathbb{Z}^+ Case 2) p>n+1>2, since n=1 is not a solution Since p\mid 2(n+1)(n^2-n+1) and p>n+1, p is odd number So p \mid n^2-n+1 So there exist positive integer k such that n^2-n+1=pk Give us p=2(n+1)k+1, so n^2-n+1=2(n+1)k^2+k So n^2-(2k^2+1)n-(2k^2+k-1)=0, so \triangle_n is perfect square So (2k^2+1)^2+4(2k^2+k-1)=4k^4+12k^2+4k-3 is perfect square But (2k^2+4)^2=4k^4+16k^2+16 >4k^4+12k^2+4k-3 >(2k^2+3)^2=4k^4+12k^2+9 when k>3 So k\leq 3 and we need to check this trivial case
31.03.2016 19:40
Yes, that's right. If you are interested the answer is n=20 and p=127
31.03.2016 19:49
What is the source of this problem ...
31.03.2016 19:52
Belarusian National Olympiad year 2012
14.08.2016 21:01
Got n=20 and p=127 for this one
27.11.2016 15:43
Similar to BMO 2005.
27.11.2016 16:37
thuanz123 wrote: Lemma: if ab=cd and \gcd(a,b)=\gcd(c,d)=1 and a,b,c,d \ne 1 then a=c,b=d or a=d,b=c Let, a=a_1^{\alpha_1}a_2^{\alpha_2}\cdots p_k^{\alpha_k} and, b=b_1^{\beta_1}b_2^{\beta_2}\cdots b_l^{\beta_l} where a_1<a_2<\cdots<a_k and b_1<b_2<\cdots<b_l are prime numbers, also, a_1,a_2,\ldots,a_k and b_1,b_2,\ldots, b_l are all positive integers. We mean by \gcd(a,b)=1 that, all the a_i's are different to all the b_j's where i=1,2,\ldots,k and, j=1,2,\ldots,l. Now, assume that \gcd (a,b)=1, we put for example, c= b_1^{\beta_1} a_2^{\alpha_2}\cdots p_k^{\alpha_k} and, d=a_1^{\alpha_1}b_2^{\beta_2}\cdots b_l^{\beta_l}. Now, you can see that, ab=cd and \gcd(a,b)=\gcd(c,d)=1 and a,b,c,d \neq 1, but a ,b\notin \{ c,d\}.