Problem

Source: 2016 RMM #6

Tags: combinatorics, combinatorial geometry, geometry, RMM, RMM 2016



A set of $n$ points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned into two subsets $\mathcal{A}$ and $\mathcal{B}$. An $\mathcal{AB}$-tree is a configuration of $n-1$ segments, each of which has an endpoint in $\mathcal{A}$ and an endpoint in $\mathcal{B}$, and such that no segments form a closed polyline. An $\mathcal{AB}$-tree is transformed into another as follows: choose three distinct segments $A_1B_1$, $B_1A_2$, and $A_2B_2$ in the $\mathcal{AB}$-tree such that $A_1$ is in $\mathcal{A}$ and $|A_1B_1|+|A_2B_2|>|A_1B_2|+|A_2B_1|$, and remove the segment $A_1B_1$ to replace it by the segment $A_1B_2$. Given any $\mathcal{AB}$-tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps.