Problem

Source: RMM 2016 Day 1 Problem 3

Tags: number theory, RMM



A $\textit{cubic sequence}$ is a sequence of integers given by $a_n =n^3 + bn^2 + cn + d$, where $b, c$ and $d$ are integer constants and $n$ ranges over all integers, including negative integers. $\textbf{(a)}$ Show that there exists a cubic sequence such that the only terms of the sequence which are squares of integers are $a_{2015}$ and $a_{2016}$. $\textbf{(b)}$ Determine the possible values of $a_{2015} \cdot a_{2016}$ for a cubic sequence satisfying the condition in part $\textbf{(a)}$.