Let $x,y,z$ be non-negative numbers such that $x+y+z \leq 3$. Prove that $$\frac{2}{1+x}+\frac{2}{1+y}+\frac{2}{1+z} \geq 3$$
Problem
Source: A book
Tags: inequalities, easy inequality
30.01.2016 16:59
30.01.2016 17:00
Is this from Pham Kim hungs book?
30.01.2016 17:04
trungnghia215 wrote:
Writing similar inequalities & substituting we get $-\frac{x+y+z}{2}+3\geq 3$ so? then we get $-1,5\geq 0$ o.O
30.01.2016 17:05
Ok, so split LHS terms like 2/1+x as 1/1+x + 1/1+x And then apply titu's lemma
30.01.2016 17:06
Imgoodinmaths_dude wrote: trungnghia215 wrote:
Writing similar inequalities & substituting we get $-\frac{x+y+z}{2}+3\geq 3$ so? then we get $-1,5\geq 0$ o.O Serious?... $f(a) + f(b) + f(c) \ge -\frac{a + b + c}{2} + \frac{9}{2} \ge 3$.
30.01.2016 17:07
Alright.... i wrote $\frac{3}{2}*3=3$ :/
30.01.2016 17:07
Titu's to the rescue
30.01.2016 17:21
trungnghia215 wrote:
From Cauchy Schwarz we have $LHS\ge 2.(\frac{9}{3+x+y+z})\ge 2.(\frac{9}{3+3})=3$
30.01.2016 17:42
My Solution: By Titu form of C-S, $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z} \geq \frac{9}{3+x+y+z} \geq \frac{9}{6} = \frac{3}{2}$ which implies the result.
30.01.2016 17:46
Titu's lemma kills this question :/
26.05.2018 08:48
$x+y+z \leq 3$ $\frac{(x+1)+(y+1)+(z+1)}{3} \leq 2$ By AM-HM $\frac{3}{\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}} \leq \frac{(x+1)+(y+1)+(z+1)}{3} \leq 2$ So, $\frac{2}{1+x}+\frac{2}{1+y}+\frac{2}{1+z} \geq 3$
26.05.2018 09:18
trivial by Cauchy-Engel or Jensen's Inequality
07.09.2018 20:22
AM-HM on $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ proves the stated inequality