A quadrilateral $ABCD$ is inscribed in a circle with center $O$. It's diagonals meet at $M$.The circumcircle of $ABM$ intersects the sides $AD$ and $BC$ at $N$ and $K$ respectively. Prove that areas of $NOMD$ and $KOMC$ are equal.
Problem
Source: Izho 2016 day 1 p1
Tags: geometry, circumcircle
15.01.2016 11:06
It's easy to see that $\angle (CBD) = \angle(DAC) $ so, by the law of sines in $ \triangle{ANM} $and in$ \triangle{BKM} $ we get that $MN=MK$.We show that $MK$ is perpendicular to $OC$. Let $\angle{BAC}$ be x.Then $\angle{MKC} $ is x and $\angle{OCB} $is 90- x, so OC is perpendicular to MK.The conclusion follows from the fact that the area of a quadrilateral is the product between the diagonals times the sin of the angle between them, over 2.
15.01.2016 20:56
I hope someone will write official solution...
18.01.2016 07:01
IstekOlympiadTeam wrote: I hope someone will write official solution... me too
18.01.2016 08:17
What about the cutoff.
18.01.2016 19:44
12-17 bronze, 18 -22 silver, 23-42 gold .
23.01.2016 09:04
Popescu wrote: It's easy to see that $\angle (CBD) = \angle(DAC) $ so, by the law of sines in $ \triangle{ANM} $and in$ \triangle{BKM} $ we get that $MN=MK$.We show that $MK$ is perpendicular to $OC$. Let $\angle{BAC}$ be x.Then $\angle{MKC} $ is x and $\angle{OCB} $is 90- x, so OC is perpendicular to MK.The conclusion follows from the fact that the area of a quadrilateral is the product between the diagonals times the sin of the angle between them, over 2. I think your solution is right, but I don't understand why the conclusion follows from the quadrilateral formula. (Edit: Sorry, I misread your meaning, you're right. Very nice solution. ) When I encounter this problem, I conjecture that if $OD$ is perpendicular to $NM$, since if the above statement is right, the area is very easy to express. Now I will claim that $DO \perp NM$ indeed. Note that $\angle DNM=\angle DBA=\angle DCA$ and $\angle NDO=90^\circ-\angle DCA$, so $DO\perp NM$. Analogously $KM \perp OC$. Since $\angle DAC=\angle CBD=\angle CAK$, it amounts to $MK=MN$. I will use $\left[\quad\right]$ to denote the area. The conclusion follows by \[ \left[DNOM\right]=NM\cdot OD=MK\cdot OC=\left[KOMC\right].\][asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(9.cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2., xmax = 7., ymin = -3., ymax = 6.; /* image dimensions */ pen ccqqqq = rgb(0.8,0.,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.); draw((0.03608970993704558,-1.8317673652434374)--(2.824472027556026,1.3416664495422839)--(1.9902271211728286,-0.6577514698413904)--(4.76,-1.88)--cycle, blue); draw((0.7513628675295366,1.2559312900989343)--(2.824472027556026,1.3416664495422839)--(1.9902271211728286,-0.6577514698413904)--(5.979443375690831,3.384105931306168)--cycle, qqwuqq); /* draw figures */ draw(circle((2.824472027556026,1.3416664495422839), 3.7583777410233092)); draw((0.8235659413822254,-1.8398077493994758)--(4.76,-1.88)); draw((4.76,-1.88)--(5.979443375690831,3.384105931306168)); draw((5.979443375690831,3.384105931306168)--(-0.86,0.6)); draw((-0.86,0.6)--(0.8235659413822254,-1.8398077493994758)); draw((4.76,-1.88)--(-0.86,0.6)); draw(circle((0.4455095882060226,-0.29991376910529244), 1.5856229301833245)); draw((0.03608970993704558,-1.8317673652434374)--(0.8235659413822254,-1.8398077493994758)); draw((5.979443375690831,3.384105931306168)--(2.824472027556026,1.3416664495422839), linetype("2 2")); draw((2.824472027556026,1.3416664495422839)--(1.9902271211728286,-0.6577514698413904), linetype("2 2")); draw((0.7513628675295366,1.2559312900989343)--(1.9902271211728286,-0.6577514698413904), linetype("2 2") + ccqqqq); draw((2.824472027556026,1.3416664495422839)--(0.03608970993704558,-1.8317673652434374), linetype("2 2")); draw((0.03608970993704558,-1.8317673652434374)--(2.824472027556026,1.3416664495422839), blue); draw((2.824472027556026,1.3416664495422839)--(1.9902271211728286,-0.6577514698413904), blue); draw((1.9902271211728286,-0.6577514698413904)--(4.76,-1.88), blue); draw((4.76,-1.88)--(0.03608970993704558,-1.8317673652434374), blue); draw((0.7513628675295366,1.2559312900989343)--(2.824472027556026,1.3416664495422839), qqwuqq); draw((2.824472027556026,1.3416664495422839)--(1.9902271211728286,-0.6577514698413904), qqwuqq); draw((1.9902271211728286,-0.6577514698413904)--(5.979443375690831,3.384105931306168), qqwuqq); draw((5.979443375690831,3.384105931306168)--(0.7513628675295366,1.2559312900989343), qqwuqq); draw((2.824472027556026,1.3416664495422839)--(4.76,-1.88), linetype("2 2")); draw((1.9902271211728286,-0.6577514698413904)--(5.979443375690831,3.384105931306168)); draw((0.8235659413822254,-1.8398077493994758)--(1.9902271211728286,-0.6577514698413904)); draw((0.03608970993704558,-1.8317673652434374)--(1.9902271211728286,-0.6577514698413904), linetype("2 2") + ccqqqq); /* dots and labels */ dot((-0.86,0.6),linewidth(3.pt) + dotstyle); label("$A$", (-1.159769523801013,0.5723052867606298), NE * labelscalefactor); dot((0.8235659413822254,-1.8398077493994758),linewidth(3.pt) + dotstyle); label("$B$", (0.7105283079324429,-2.162564184170367), NE * labelscalefactor); dot((4.76,-1.88),linewidth(3.pt) + dotstyle); label("$C$", (4.786366035577993,-2.1449198650030703), NE * labelscalefactor); dot((5.979443375690831,3.384105931306168),linewidth(3.pt) + dotstyle); label("$D$", (6.10968997312525,3.4130406726954075), NE * labelscalefactor); dot((2.824472027556026,1.3416664495422839),linewidth(3.pt) + dotstyle); label("$O$", (2.6866920546696793,1.419232606790874), NE * labelscalefactor); dot((1.9902271211728286,-0.6577514698413904),linewidth(3.pt) + dotstyle); label("$M$", (2.157362479650777,-0.6980856932847366), NE * labelscalefactor); dot((0.03608970993704558,-1.8317673652434374),linewidth(3.pt) + dotstyle); label("$K$", (-0.1540433312650981,-2.162564184170367), NE * labelscalefactor); dot((0.7513628675295366,1.2559312900989343),linewidth(3.pt) + dotstyle); label("$N$", (0.6399510312632559,1.4015882876235772), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
27.01.2016 10:17
Complex2Liu wrote: Popescu wrote: It's easy to see that $\angle (CBD) = \angle(DAC) $ so, by the law of sines in $ \triangle{ANM} $and in$ \triangle{BKM} $ we get that $MN=MK$.We show that $MK$ is perpendicular to $OC$. Let $\angle{BAC}$ be x.Then $\angle{MKC} $ is x and $\angle{OCB} $is 90- x, so OC is perpendicular to MK.The conclusion follows from the fact that the area of a quadrilateral is the product between the diagonals times the sin of the angle between them, over 2. I think your solution is right, but I don't understand why the conclusion follows from the quadrilateral formula. (Edit: Sorry, I misread your meaning, you're right. Very nice solution. ) When I encounter this problem, I conjecture that if $OD$ is perpendicular to $NM$, since if the above statement is right, the area is very easy to express. Now I will claim that $DO \perp NM$ indeed. Note that $\angle DNM=\angle DBA=\angle DCA$ and $\angle NDO=90^\circ-\angle DCA$, so $DO\perp NM$. Analogously $KM \perp OC$. I dont understand that step why those angles are equal?? or why $\angle NDO=90^\circ-\angle DCA$??
14.12.2021 07:20
sinus Law
14.12.2021 07:25
the perpendicularity of $MN$ and $DO$ follows from the simple angle calculation. $\angle MAN=\angle MBC=\angle KAM$ $KM=MN$ The rest is easy.
19.12.2021 17:13
\[\angle{CAD}=\angle{DBC} \to \widehat{MN}=\widehat{MK} \to MN=MK \]Since $OD$ and $OC$ are radii, then $OC=OD$ Let $l$ be the tangent line to $(ABCD)$ at point D and let $Z$ be on $l$, such that $\angle{ADZ}=\angle{ABD}$. Then $\angle{ADZ}=\angle{ABD}=\angle{MND}$(Since $ABMN$-cyclic).$\to MN || ZD \to OD \perp NM$. Simillarly, $OC \perp KM$. So $[NOMD]=[KOMC]$, since the diagonals are equal
08.10.2024 19:49
Proposed by Sava Grozdev, Bulgaria.