Let $ABC$ be an acute triange with $B,C$ fixed. Let $D$ be the midpoint of $BC$ and $E,F$ be the foot of the perpendiculars from $D$ to $AB,AC$, respectively. a) Let $O$ be the circumcenter of triangle $ABC$ and $M=EF\cap AO, N=EF\cap BC$. Prove that the circumcircle of triangle $AMN$ passes through a fixed point; b) Assume that tangents of the circumcircle of triangle $AEF$ at $E,F$ are intersecting at $T$. Prove that $T$ is on a fixed line.
Problem
Source: Vietnam Mathematical Olympiad 2016, Day 1, Problem 3
Tags: geometry proposed, geometry
06.01.2016 20:21
My solution. Let $O$ be the circumcenter of $\odot(ABC)$, $P\equiv AO\cap DE$, $X\equiv AO\cap BC$, $L$ be the midpoint of $EF$. (a). I'll claim that $D \in \odot(AMN)$. Note that $\angle EDB=90^\circ-\angle ABC=\angle OAC \implies P,D,C,A$ are concyclic $\implies \angle DEF=\angle DAF=\angle DPC \implies EF\parallel CP$. Thus $\angle MND=\angle PCD=\angle PAD$ as desired. (b). I'll cliam that $T,O,D$ are collinear. At the beginning, see CGMO P1 here. CGMO P1 give us $DL\parallel AO \implies \angle LDE=\angle APE=90^\circ - \angle PAE=\angle ACB=\angle ODF \implies OD$ is symmedian wrt $\odot(AFDE)$. The result then follows. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(8.cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4., xmax = 4., ymin = 0., ymax = 6.; /* image dimensions */ pen qqwuqq = rgb(0.,0.39215686274509803,0.); /* draw figures */ draw((-2.637890858329396,2.2940942981823103)--(1.438144837420839,2.245186641312026)); draw(circle((-0.5871334390923537,3.3313749903251444), 2.2981638816342254)); draw((-0.5871334390923537,3.3313749903251444)--(1.0028818425330395,4.990714808158073)); draw((-0.5871334390923537,3.3313749903251444)--(-0.7858669000411942,3.1239767667363423)); draw((1.3843965522677404,2.5842171413561323)--(2.81394433678211,2.228678657854662)); draw((2.81394433678211,2.228678657854662)--(1.438144837420839,2.245186641312026)); draw(circle((1.1171350475889408,3.090857041369486), 1.9032901326104914), dotted + red); draw(circle((0.20150441603938096,3.630177638952621), 1.5790082863883845), qqwuqq); draw((1.0028818425330395,4.990714808158073)--(-0.5998730104542785,2.269640469747168)); draw((-1.333544381900148,3.260187968248703)--(1.3843965522677404,2.5842171413561323)); draw((-0.5998730104542785,2.269640469747168)--(0.025426085183796188,2.9222025548024178)); draw((-0.5998730104542785,2.269640469747168)--(-1.333544381900148,3.260187968248703), linetype("2 2")); draw((-0.5998730104542785,2.269640469747168)--(1.3843965522677404,2.5842171413561323), linetype("2 2")); draw((1.0028818425330395,4.990714808158073)--(-1.333544381900148,3.260187968248703)); draw((-1.333544381900148,3.260187968248703)--(-2.637890858329396,2.2940942981823103)); draw((1.0028818425330395,4.990714808158073)--(1.3843965522677404,2.5842171413561323)); draw((1.3843965522677404,2.5842171413561323)--(1.438144837420839,2.245186641312026)); draw((-1.0378681336239899,2.8609882999843186)--(1.438144837420839,2.245186641312026)); draw((-1.333544381900148,3.260187968248703)--(-0.6233427845992126,0.3136351464972205)); draw((-0.6233427845992126,0.3136351464972205)--(1.3843965522677404,2.5842171413561323)); draw((-0.5871334390923537,3.3313749903251444)--(-0.5998730104542785,2.269640469747168)); draw((-0.7858669000411942,3.1239767667363423)--(-1.0378681336239899,2.8609882999843186)); draw((-1.0378681336239899,2.8609882999843186)--(-1.5930908475850896,2.2815579211145556)); /* dots and labels */ dot((1.0028818425330395,4.990714808158073),linewidth(3.pt) + dotstyle); label("$A$", (1.1185787726583372,5.076854404401451), NE * labelscalefactor); dot((-2.637890858329396,2.2940942981823103),linewidth(3.pt) + dotstyle); label("$B$", (-2.9062272391943287,2.1322353001415904), NE * labelscalefactor); dot((1.438144837420839,2.245186641312026),linewidth(3.pt) + dotstyle); label("$C$", (1.4145203911769155,1.8954820053267272), NE * labelscalefactor); dot((-0.5998730104542785,2.269640469747168),linewidth(3.pt) + dotstyle); label("$D$", (-0.7458534240087066,1.9990615718082296), NE * labelscalefactor); dot((-1.333544381900148,3.260187968248703),linewidth(3.pt) + dotstyle); label("$E$", (-1.5892870367866547,3.316001774215906), NE * labelscalefactor); dot((1.3843965522677404,2.5842171413561323),linewidth(3.pt) + dotstyle); label("$F$", (1.148172934510195,2.7241185371787484), NE * labelscalefactor); dot((-0.5871334390923537,3.3313749903251444),linewidth(3.pt) + dotstyle); label("$O$", (-0.7458534240087066,3.389987178845551), NE * labelscalefactor); dot((2.81394433678211,2.228678657854662),linewidth(3.pt) + dotstyle); label("$N$", (2.9682138883994518,2.0138586527341586), NE * labelscalefactor); dot((-0.7858669000411942,3.1239767667363423),linewidth(3.pt) + dotstyle); label("$M$", (-0.8790271523420667,2.857292265512109), NE * labelscalefactor); dot((0.025426085183796188,2.9222025548024178),linewidth(3.pt) + dotstyle); label("$L$", (0.008797703213668266,2.6649302134750323), NE * labelscalefactor); dot((-0.18471919939945194,2.9744671496659563),linewidth(3.pt) + dotstyle); label("$K$", (-0.301940996230839,3.049654317549185), NE * labelscalefactor); dot((-1.0378681336239899,2.8609882999843186),linewidth(3.pt) + dotstyle); label("$P$", (-1.1157804471569295,2.531756485141672), NE * labelscalefactor); dot((-0.6233427845992126,0.3136351464972205),linewidth(3.pt) + dotstyle); label("$T$", (-0.5238972101197727,0.10503521328932429), NE * labelscalefactor); dot((-1.5930908475850896,2.2815579211145556),linewidth(3.pt) + dotstyle); label("$X$", (-1.7668520078978018,2.0434528145860167), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
07.01.2016 10:00
My solution for part b) Let $DO\cap \odot (AEF)=X$, then $(X,D;E,F)=A(\infty,D;B,C)=-1\implies XEDF$ is harmonic quadrilateral. Hence $T,D,X$ collinear so $T$ lies on perpendicular bisector of $BC$(which is fixed).
15.08.2016 10:46
26.04.2019 17:22
Here is my solution for this problem a) We have: ($DA$; $DB$) $\equiv$ ($DA$; $DE$) + ($DE$; $DB$) $\equiv$ ($FA$; $FE$) + $\dfrac{\pi}{2}$ $-$ ($BC$; $BA$) $\equiv$ ($FA$; $FE$) + ($AO$; $AC$) $\equiv$ ($NA$; $NM$) (mod $\pi$) So: $D$ $\in$ ($AMN$) b) Let $S$ $\equiv$ $DO$ $\cap$ ($AEF$) ($S$ $\not \equiv$ $D$) then $AS$ $\parallel$ $BC$ We have: $\dfrac{SE}{SF}$ = $\dfrac{AD . \sin \widehat{SFE}}{AD . \sin \widehat{SEF}}$ = $\dfrac{\sin \widehat{SAE}}{\sin \widehat{FAS}}$ = $\dfrac{\sin \widehat{ABC}}{\sin \widehat{ACB}}$ = $\dfrac{DE}{BD}$ . $\dfrac{DC}{DF}$ = $\dfrac{DE}{DF}$ So: $DESF$ is harmonic quadrilateral Hence: tangents at $E$, $F$ of ($AEF$) and $DS$ concurrent at $T$ or $T$ lies on perpendicular bisector of $BC$