Let $m$, $n$ be positive integers. On an $m\times{n}$ checkerboard, divided into $1\times1$ squares, we consider all paths that go from upper right vertex to the lower left vertex, travelling exclusively on the grid lines by going down or to the left. We define the area of a path as the number of squares on the checkerboard that are below this path. Let $p$ be a prime such that $r_{p}(m)+r_{p}(n)\geq{p}$, where $r_{p}(m)$ denotes the remainder when $m$ is divided by $p$ and $r_{p}(n)$ denotes the remainder when $n$ is divided by $p$. How many paths have an area that is a multiple of $p$?