Let x, y be reals satisfying: sin x+cos y=1 sin y+cos x=-1 Prove cos 2x=cos 2y
Problem
Source: MOSP 2006 homework
Tags: trigonometry
junggi
26.10.2006 09:52
D.P.L wrote: Let x, y be reals satisfying: $\sin x+\cos y=1$ $\sin y+\cos x=-1$ Prove $\cos 2x=\cos 2y$
square $\sin x+\cos y=1$
$\sin^{2}x+2\sin x\cos y+\cos^{2}y=1$
square $\sin y+\cos x=-1$
$\sin^{2}y+2\sin y\cos x+\cos^{2}x=1$
add the two and simplify
$\sin (x+y)=0$
subtract the two and simplify
$\sin^{2}x-\cos^{2}x+\cos^{2}y-\sin^{2}y+2\sin x\cos y-2\sin y\cos x=0$
$-\cos2x+\cos2y+2(\sin(x-y))=0$(1)
multiply two original equations together
$\sin x\sin y+\cos x\cos y+\sin x\cos y+\sin y\cos x=1$
$\cos(x-y)+\sin(x+y)=1$
$\cos(x-y)=1$
so $\sin(x-y)=0$
then (1) becomes
$\cos2y-\cos2x=0$
$\cos2y=\cos2x$ AWD
t0rajir0u
27.10.2006 06:56
Let $z = \frac{\pi}{2}-y$. Then
$\sin x+\sin z = 1$
$\cos x+\cos z =-1$
And we want to prove
$\cos 2x = \cos (\pi-2z) =-\cos (2z)$
Well, let $u = e^{i x}, v = e^{i z}$. Then
$u+v = i-1$
Of course, geometrically, we can only have two cases (there are only two right triangles with side lengths $1, 1, \sqrt{2}$ such that the hypotenuse is the line from $(0, 0)$ to $(-1, 1)$):
$u = i, v =-1$
Or
$u =-1, v = i$
Both of which satisfy our condition. QED.
Kurt Gödel
28.10.2006 00:58
junggi wrote: D.P.L wrote: Let x, y be reals satisfying: $\sin x+\cos y=1$ $\sin y+\cos x=-1$ Prove $\cos 2x=\cos 2y$
square $\sin x+\cos y=1$
$\sin^{2}x+2\sin x\cos y+\cos^{2}y=1$
square $\sin y+\cos x=-1$
$\sin^{2}y+2\sin y\cos x+\cos^{2}x=1$
add the two and simplify
$\sin (x+y)=0$
subtract the two and simplify
$\sin^{2}x-\cos^{2}x+\cos^{2}y-\sin^{2}y+2\sin x\cos y-2\sin y\cos x=0$
$-\cos2x+\cos2y+2(\sin(x-y))=0$(1)
multiply two original equations together
$\sin x\sin y+\cos x\cos y+\sin x\cos y+\sin y\cos x=1$
$\cos(x-y)+\sin(x+y)=1$
$\cos(x-y)=1$
so $\sin(x-y)=0$
then (1) becomes
$\cos2y-\cos2x=0$
$\cos2y=\cos2x$ AWD
From $\sin(x+y) = 0$, you immediately get $x+y = k\pi$, so $y = k\pi-x$. Therefore, \[\cos 2y = \cos(2k\pi-2x) = \cos(-2x) = \cos(2x)\]