Problem

Source: India Postals 2015 Set 2

Tags: number theory, prime numbers



For every positive integer$ n$, let $P(n)$ be the greatest prime divisor of $n^2+1$. Show that there are infinitely many quadruples $(a, b, c, d)$ of positive integers that satisfy $a < b < c < d$ and $P(a) = P(b) = P(c) = P(d)$.