Problem

Source:

Tags: geometry, cyclic quadrilateral



Let $A$ be a point outside of a circumference $\omega$. Through $A$, two lines are drawn that intersect $\omega$, the first one cuts $\omega$ at $B$ and $C$, while the other one cuts $\omega$ at $D$ and $E$ ($D$ is between $A$ and $E$). The line that passes through $D$ and is parallel to $BC$ intersects $\omega$ at point $F \neq D$, and the line $AF$ intersects $\omega$ at $T \neq F$. Let $M$ be the intersection point of lines $BC$ and $ET$, $N$ the point symmetrical to $A$ with respect to $M$, and $K$ be the midpoint of $BC$. Prove that the quadrilateral $DEKN$ is cyclic.