Suppose $a,b,c\in[0,2]$ and $a+b+c=3$. Find the maximal and minimal value of the expression $$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}.$$
Problem
Source: Kömal B4731
Tags: inequalities
14.10.2015 18:36
15.10.2015 11:51
Ok . I have a very nice proof for it . An excellent problem .
15.10.2015 12:07
Maximal value is quite easy to find... Use Cauchy Schwarz on the sequences: $(a+b+c)((b+1)+(c+1)+(a+1)) \ge (\sqrt{a(b+1)}+ \sqrt{b(c+1)} + \sqrt{c(a+1)})^2$ There the above exp is less than equal to $3\sqrt{2}$
15.10.2015 14:09
$\sum_{cyc}\sqrt{a(b+1)}=\frac{1}{\sqrt{2}}\sum_{cyc}\sqrt{2a(b+1)}\leq\frac{1}{\sqrt{2}}\sum_{cyc}\frac{2a+(b+1)}{2}=3\sqrt{2}.$ Equality holds when $a=b=c=1.$ KöMaL
17.10.2015 10:56
Yes, but how do you find the minimum? That is the hard part.
17.10.2015 11:37
If $a,b,c\in[0,2]$ and $a+b+c=3$. Then$$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}\geq3.$$Equality holds when $a=2,b=1,c=0$ or $a=0,b=2,c=1$ or $a=1,b=0,c=2.$
17.10.2015 11:53
From $a+b+c=3$ it follows that \begin{align*} \sum_{\text{cyc}}\sqrt{a(b+1)} &\ge{}\sum_{\text{cyc}}ab(b+1)(c+1) \\ &\ge{}3. \end{align*}
17.10.2015 12:27
It follows . But wewe are your proofs ?
17.10.2015 13:16
randomusername wrote: Suppose $a,b,c\in[0,2]$ and $a+b+c=3$. Find the maximal and minimal value of the expression $$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}.$$ By rearrangmenent and Jensen we have: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \sqrt{a(a+1)}+\sqrt{b(b+1)}+\sqrt{c(c+1)} \leq 3\sqrt{\frac{a+b+c}{3}(\frac{a+b+c}{3}+1)}=3\sqrt{2}$ Equality holds when $a=b=c=1$
17.10.2015 14:51
randomusername wrote: Suppose $a,b,c\in[0,2]$ and $a+b+c=3$. Find the maximal and minimal value of the expression $$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}.$$ Here is my nice solution: $\bigstar$ By AM-GM we have $\sqrt{2a(b+1)}+\sqrt{2b(c+1)}+\sqrt{2c(a+1)}\le\frac{2a+b+1}{2}+\frac{2c+a+1}{2}+\frac{2c+a+1}{2}=6$,so $$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}\le 3\sqrt{2}.$$Equality holds for $(a,b,c)=(1,1,1)$. $\bigstar$ We will prove that $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}\ge 3$.By squaring that we obtain $$ab+bc+ca+2\sqrt{ab(b+1)(c+1)}+2\sqrt{ac(a+1)(b+1)}+2\sqrt{bc(c+1)(a+1)}\ge 6.$$But \begin{align*} 2\sqrt{ab(b+1)(c+1)}+2\sqrt{ac(a+1)(b+1)}+2\sqrt{bc(c+1)(a+1)} & \ge 2\sqrt{ab(b+1)(c+1)+ac(a+1)(b+1)+bc(c+1)(a+1)} \\ & =2\sqrt{6abc+ab^2+bc^2+ca^2+ab+bc+ca} \\ & \ge 2\sqrt{ab^2+bc^2+ca^2+ab+bc+ca} \end{align*} so we suffice to prove that $$ab+bc+ca+2\sqrt{ab^2+bc^2+ca^2+ab+bc+ca}\ge 6.$$Now,since $a,b,c\in [0,2]$ we deduce that $$a(2-a)(2-c)\ge 0,$$$$b(2-b)(2-a)\ge 0,$$$$c(2-c)(2-b)\ge 0.$$By adding those inequalities we deduce that $a(2-a)(2-c)+b(2-b)(2-a)+c(2-c)(2-b)\ge 0$ i.e. $$12+ab^2+bc^2+ca^2\ge 2(a^2+b^2+c^2)+2(ab+bc+ca)=a^2+b^2+c^2+9 \implies$$$$\implies ab^2+bc^2+ca^2\ge a^2+b^2+c^2-3.$$Thus $$ab+bc+ca+2\sqrt{ab^2+bc^2+ca^2+ab+bc+ca}\ge ab+bc+ca+2\sqrt{a^2+b^2+c^2-3+ab+bc+ca}=ab+bc+ca+2\sqrt{6-(ab+bc+ca)}.$$Let $ab+bc+ca=x$.It's enough to prove that $x+2\sqrt{6-x}\ge 6$,which is equivalent to $4(6-x)\ge (6-x)^2$ or $8x\ge 12+x^2$. Since $a,b,c\in [0,2]$ we deduce that $(2-a)(2-b)(2-c)\ge 0$,which is equivalent to $2(ab+bc+ca)\ge 4+abc$.Thus $2x\ge 4+abc\ge 4$,implying that $x\ge 2$.Let $x=2+y,y\ge 0$.We have $8x\ge 12+x^2$ $\iff$ $4y\ge y^2$.But $$2+y=ab+bc+ca\le\frac{(a+b+c)^2}{3}=3$$,so $y\le 1$. Therefore $y\in [0,1]$,from where it follows that $4y\ge y^2$. We conclude that $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}\ge 3$.Equality holds for $(a,b,c)=(0,2,1),(1,0,2),(2,1,0)$.
17.10.2015 17:52
ok huricane how did you assume or guess at first that the given exp. will be >=3?
17.10.2015 21:13
Because the minimum should be taken when two variables are at opposite borders of the domain, when this domain is finite, and when the equality of all variables gives maximum.
21.10.2015 22:21
(http://www.artofproblemsolving.com/community/c6h1154302p5471428)
05.11.2015 18:19
MathKnight16 wrote: From $a+b+c=3$ it follows that $\sum_{\text{cyc}}\sqrt{a(b+1)} \ge\sum_{\text{cyc}}ab(b+1)(c+1)$ It's wrong! Try $a=2$, $b=1$ and $c=0$.
10.11.2015 05:12
Upper bound is easy,i will prove it for lower bound which is $3$. Squaring,$$2\sum\sqrt{ab(b+1)(c+1)}+\sum ab\ge 6$$We have that $\sum ab\ge 2$ indeed suppose $a$ is greatest.Then by php,$a\ge 1$.And $\sum ab\ge a(b+c)=3a-a^2\ge 2$ as it is eq to $(a-1)(a-2)\le 0$ which is true. so we are to prove $$\sum \sqrt{ab(b+1)(c+1)}\ge 2$$. squaring again are neglecting the $2xy$ type of terms in expansion of form $(x+y+z)^2$, $$\sum ab(b+1)(c+1)\ge 4$$Now WLOG assume $a$ is greatest so $(a+1)(b+1)\ge2$ and $(c+1)(a+1)\ge 2$ as $a\ge 1$. Also,$(b+1)(c+1)\ge b+c+1=4-a\ge2$ substituting these above we reduce the ineq to $$\sum ab\ge 2$$which is proved already.So done
29.03.2016 12:28
randomusername wrote: Suppose $a,b,c\in[0,2]$ and $a+b+c=3$. Find the maximal and minimal value of the expression $$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}.$$
19.05.2016 01:30
luofangxiang wrote: randomusername wrote: Suppose $a,b,c\in[0,2]$ and $a+b+c=3$. Find the maximal and minimal value of the expression $$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)}.$$ http://www.artofproblemsolving.com/community/c6h1244259p6372987