Let the integer $n \ge 2$ , and $x_1,x_2,\cdots,x_n $ be positive real numbers such that $\sum_{i=1}^nx_i=1$ .Prove that$$\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(\sum_{1\le i<j\le n} x_ix_j\right)\le \frac{n}{2}.$$
Problem
Source: China Yinchuan Aug 16, 2015
Tags: inequalities
16.08.2015 20:41
Suppose that $x_1\le x_2\le\ldots \le x_n$ and with Cebasev inequality we have $$2\cdot LHS=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(1-\sum_{i=1}^n x_i^2\right)=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(\sum_{i=1}^n x_i(1-x_i)\right)\le n\sum_{i=1}^n x_i=n$$
17.08.2015 01:25
Very nice. Thanks.
24.07.2019 04:03
MariusStanean wrote: Suppose that $x_1\le x_2\le\ldots \le x_n$ and with Cebasev inequality we have $$2\cdot LHS=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(1-\sum_{i=1}^n x_i^2\right)=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(\sum_{i=1}^n x_i(1-x_i)\right)\le n\sum_{i=1}^n x_i=n$$ what is Cebasev inequality
24.07.2019 04:24
zsgvivo wrote: MariusStanean wrote: Suppose that $x_1\le x_2\le\ldots \le x_n$ and with Cebasev inequality we have $$2\cdot LHS=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(1-\sum_{i=1}^n x_i^2\right)=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(\sum_{i=1}^n x_i(1-x_i)\right)\le n\sum_{i=1}^n x_i=n$$ what is Cebasev inequality https://en.wikipedia.org/wiki/Chebyshev%27s_sum_inequality
24.07.2019 04:40
sqing wrote: zsgvivo wrote: MariusStanean wrote: Suppose that $x_1\le x_2\le\ldots \le x_n$ and with Cebasev inequality we have $$2\cdot LHS=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(1-\sum_{i=1}^n x_i^2\right)=\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(\sum_{i=1}^n x_i(1-x_i)\right)\le n\sum_{i=1}^n x_i=n$$ what is Cebasev inequality https://en.wikipedia.org/wiki/Chebyshev%27s_sum_inequality thanks!
24.07.2019 14:17
@fair enogh...thanks
24.07.2019 14:57
For $a+b<1, a,b\ge 0$ holds $\frac{1}{1-a}\le\frac{1}{1-b}\iff a\le b$ and $a(1-a)\le b(1-b)\iff a-b\le (a-b)(a+b)\iff (1-a-b)(a-b)\le0\iff a\le b$ which proves sequences $\left(\frac{1}{1-x_i}\right)$, $\left(x_i(1-x_i)\right)$ are non-decreasing for $0<x_1\le x_2\le\ldots \le x_n, x_1+x_2+...+x_n=1$ so we can use Chebyshev