In triangle $ABC$, if $L,M,N$ are midpoints of $AB,AC,BC$. And $H$ is orthogonal center of triangle $ABC$, then prove that \[LH^{2}+MH^{2}+NH^{2}\leq\frac14(AB^{2}+AC^{2}+BC^{2})\]
Problem
Source: Iranian National Olympiad (3rd Round) 2006
Tags: inequalities, trigonometry, geometry, incenter, geometric transformation, reflection, circumcircle
22.09.2006 11:46
Only if the triangle $ABC$ is acute or right ! Omid Hatami wrote: In acute or right triangle $ABC$, if $L,M,N$ are midpoints of the its sides and $H$ is its orthocenter, then show that $\boxed{\ LH^{2}+MH^{2}+NH^{2}\leq\frac14\cdot \left(a^{2}+b^{2}+c^{2}\right)\ }$ Proof. It is well-known that $HA=2R|\cos A|$, $a=2R\sin A$ a.s.o. and $\Delta\equiv\sum \cos 2A=-1-4\prod\cos A\ .$ Therefore, $4\sum HL^{2}-\sum a^{2}=$ $\sum\left(4\cdot HL^{2}-a^{2}\right)=$ $\sum\left[2\left(HB^{2}+HC^{2}\right)-2a^{2}\right]=$ $4\sum HA^{2}-2\sum a^{2}=$ $16R^{2}\sum \cos^{2}A-8R^{2}\sum \sin^{2}A=$ $8R^{2}\sum (1+\cos 2A)-4R^{2}\sum (1-\cos 2A)=$ $8R^{2}(3+\Delta )-4R^{2}(3-\Delta )=$ $4R^{2}(6+2\Delta-3+\Delta)=$ $12R^{2}(1+\Delta )=$ $-48R^{2}\cos A\cos B\cos C\le 0$ $\Longrightarrow$ $\sum HL^{2}\le\frac{1}{4}\cdot\sum a^{2}\ .$ Remark. I posted long ago the following inequality : $\boxed{\ \sum IM^{2}\ge r(R+r)\ }\ ,$ where $I$ is the incenter of the triangle $ABC$. Try solve it !
11.02.2007 22:25
A correction : $\sum IM^{2}\ge r(R+r)$
11.02.2007 22:28
I have wondered this for a long time: what does you a.s.o stand for? Is it something along the lines of "and symmetric others"?
11.02.2007 23:52
$\left\{\begin{array}{c}4\cdot IM^{2}=2\left(IB^{2}+IC^{2}\right)-a^{2}\\\\ IB^{2}=\frac{ac(p-b)}{p}\\\\ IC^{2}=\frac{ab(p-c)}{p}\end{array}\right\|$ $\Longrightarrow$ $4p\cdot IM^{2}=2ac(p-b)+2ab(p-c)-pa^{2}=a[c(a+c-b)+b(a+b-c)-ap]=$ $a\left[(b-c)^{2}+a(b+c)-ap\right]=a(b-c)^{2}+a^{2}(p-a)$ $\Longrightarrow$ $\left\{\begin{array}{c}4p\cdot\sum IM^{2}=\sum \left[a(b-c)^{2}\right]+\sum a^{2}(p-a)\\\\ \sum a^{2}(p-a)=4S(R+r)\end{array}\right\|$ $\Longrightarrow$ $4p\cdot \sum IM^{2}=\sum \left[a(b-c)^{2}\right]+4pr(R+r)$ $\Longrightarrow$ $\boxed{\ \sum IM^{2}\ge r(R+r)\ }\ .$
12.02.2007 12:37
Forall $P$ on plane then $PA'^{2}+PB'^{2}+PC'^{2}\ge\frac{a^{2}+b^{2}+c^{2}}{12}\ge\frac{r(4R+r)}{3}\ge r(R+r)$ with $A',B',C'$ are midpoint of $BC,CA,AB$ resp Thus the result of Virgil Nicula is true for all $P$ on plane! And more here we can show min of $\sum PA'^{2}$ with a fix triangle $ABC$ and really it is only simple result!
10.02.2011 10:54
Omid Hatami wrote: In triangle $ABC$, if $L,M,N$ are midpoints of $AB,AC,BC$. And $H$ is orthogonal center of triangle $ABC$, then prove that \[LH^{2}+MH^{2}+NH^{2}\leq\frac14(AB^{2}+AC^{2}+BC^{2})\] i tried in complex co-ordinat and the result became $2abc+ \sum (a^2b+b^2a) \ge 0$ is this true? $a,b,c$ are co-ordinat of $A,B,C$ and $h=a+b+c$ $l=(a+b)/2$ $m=(a+c)/2$ $n=(b+c)/2$
13.02.2011 22:55
tsemng wrote: Omid Hatami wrote: In triangle $ABC$, if $L,M,N$ are midpoints of $AB,AC,BC$. And $H$ is orthogonal center of triangle $ABC$, then prove that \[LH^{2}+MH^{2}+NH^{2}\leq\frac14(AB^{2}+AC^{2}+BC^{2})\] i tried in complex co-ordinat and the result became $2abc+ \sum (a^2b+b^2a) \ge 0$ is this true? $a,b,c$ are co-ordinat of $A,B,C$ and $h=a+b+c$ $l=(a+b)/2$ $m=(a+c)/2$ $n=(b+c)/2$ Hmm, I am getting a different result. Denote by $H$, the origin; and give $A,B,C$ the affixes $u,v,w.$ So we see that $l=\frac{v+w}{2}, m=\frac{w+u}{2},n=\frac{u+v}{2}.$ Therefore $AB^2+BC^2+CA^2=(u-v)^2+(v-w)^2+(w-u)^2$ and $LP^2+MP^2+NP^2=\frac 14\left[(w+u)^2+(u+v)^2+(v+w)^2\right].$ Also, $u+v+w=0$; so that \[\begin{aligned}\frac 14\left[AB^2+BC^2+CA^2\right]&=\frac 14\left[(u-v)^2+(v-w)^2+(w-u)^2\right]\\&=\frac 14\left[2(u+v+w)^2+(u-v)^2+(v-w)^2+(w-u)^2\right]\\&=\frac 14\left[2(u^2+v^2+w^2)+(u+v)^2+(v+w)^2+(w+u)^2\right]\\&\geq \frac 14\left[(u+v)^2+(v+w)^2+(w+u)^2\right];\end{aligned}\] And we are done. $\Box$
24.01.2012 20:47
And so what is the equality case ? Is it when the triangle is reduced to a point ? Thanks in advance.
06.02.2012 19:19
Only if $ABC$ is acute or right. Equality holds if it is right. We use the fact that reflection of the orthogonal center with the respect to the midpoints of the triangle lay on the circumcircle. Denote $P,Q$ intersection of $HL$ with circumcircle. ($P$ is reflection of $H$ wrt $L$) Looking at power of the point $L$ wrt to the circumcircle and noticing that $LP=HL \leq LQ$ we get $\frac{AB^2}{4}=AL*BL=LQ*LP \geq HL^2$ Applying this to two other sides we get the desired result.
02.02.2015 13:25
From Leybnits's identity it's equivalent to $ cosA \cdot cosB \cdot cosC \ge 0 $.It's true if and only if $ ABC $ is non-obtuse!
12.05.2015 09:16
Virgil Nicula wrote: Only if the triangle $ABC$ is acute or right ! Omid Hatami wrote: In acute or right triangle $ABC$, if $L,M,N$ are midpoints of the its sides and $H$ is its orthocenter, then show that $\boxed{\ LH^{2}+MH^{2}+NH^{2}\leq\frac14\cdot \left(a^{2}+b^{2}+c^{2}\right)\ }$ Proof. It is well-known that $HA=2R|\cos A|$, $a=2R\sin A$ a.s.o. and $\Delta\equiv\sum \cos 2A=-1-4\prod\cos A\ .$ Therefore, $4\sum HL^{2}-\sum a^{2}=$ $\sum\left(4\cdot HL^{2}-a^{2}\right)=$ $\sum\left[2\left(HB^{2}+HC^{2}\right)-2a^{2}\right]=$ $4\sum HA^{2}-2\sum a^{2}=$ $16R^{2}\sum \cos^{2}A-8R^{2}\sum \sin^{2}A=$ $8R^{2}\sum (1+\cos 2A)-4R^{2}\sum (1-\cos 2A)=$ $8R^{2}(3+\Delta )-4R^{2}(3-\Delta )=$ $4R^{2}(6+2\Delta-3+\Delta)=$ $12R^{2}(1+\Delta )=$ $-48R^{2}\cos A\cos B\cos C\le 0$ $\Longrightarrow$ $\sum HL^{2}\le\frac{1}{4}\cdot\sum a^{2}\ .$ Remark. I posted long ago the following inequality : $\boxed{\ \sum IM^{2}\ge r(R+r)\ }\ ,$ where $I$ is the incenter of the triangle $ABC$. Try solve it ! Sorry,I don,t know why LH^2-a^2=2(BH^2+CH^2)-2a^2 Can you explain?
12.05.2015 09:25
$ O $ the center of $ \odot (ABC) $ and WLOG let $\odot (ABC)$ be unit circle vectors By Euler line we get $ H=a+b+c $ $ LH^{2}+MH^{2}+NH^{2}\leq\frac14(AB^{2}+AC^{2}+BC^{2}) \Longleftrightarrow \sum_{cyc} (\frac{a+b+2c}{2})^2 \le \sum_{cyc} (\frac{a-b}{2})^2 $ We use that $ a^2=b^2=c^2=1 $ $ \Leftrightarrow -1 \ge ab+bc+ca $ By scalar product ,$ ab= cos(2C) $, $ \Leftrightarrow -1 \ge cos(2A)+cos(2B)+cos(2C) $ $ \Leftrightarrow -1 \ge 2cos(A+B)cos(A-B)+2cos^2(A+B)-1 $ $ \Leftrightarrow 0 \ge +4cos(A+B)cosAcosB $ $ \Leftrightarrow 0 \ge -4cos(C)cos(A)cos(B) $ This is true for acute or right triangle.