Prove that for positive reals $a,b,c$, \[\frac{8a^2+2ab}{(b+\sqrt{6ac}+3c)^2}+\frac{2b^2+3bc}{(3c+\sqrt{2ab}+2a)^2}+\frac{18c^2+6ac}{(2a+\sqrt{3bc}+b})^2\geq 1\]
Problem
Source: 2013 Taiwan TST
Tags: Inequality, algebra, Taiwan, Taiwan TST 2013
12.07.2015 16:14
Letting $x^2=2a$, $y^2=b$, $z^2=3c$, the inequality becomes \[ \sum_{\text{cyc}} \frac{2x^4+y^2z^2}{\left( y^2+z^2+xz \right)^2} \ge 1. \] I did a full expansion of this a couple years ago, but I can't seem to remember if there's a nice way to finish off.
12.07.2015 16:18
I remember that this is from a problem in Korea TST, but it seems that I fail to find it immediately....
12.07.2015 17:14
Proceed to FKMO 2012 P1
05.01.2016 03:35
v_Enhance wrote: Letting $x^2=2a$, $y^2=b$, $z^2=3c$, the inequality becomes \[ \sum_{\text{cyc}} \frac{2x^4+y^2z^2}{\left( y^2+z^2+xz \right)^2} \ge 1. \]I did a full expansion of this a couple years ago, but I can't seem to remember if there's a nice way to finish off. I believe that it should be $$\sum_{\text{cyc}}\frac{2x^4+x^2y^2}{\left(y^2+z^2+xz\right)^2}\geq1$$instead...
07.05.2016 13:04
Let $$x=2a,y=b,z=3c$$$$\Rightarrow$$$$\sum_{cyc}\frac{x*(2x+y)}{(y+\sqrt{xz}+z)^2}\geq 1 $$By Cauchy-Schwarz inequality $$(2x+y)(\frac{z^2}{x}+z+y)=(x+x+y)(\frac{z^2}{x}+z+y)\geq (y+\sqrt{xz}+z)^2$$$$\sum_{cyc}\frac{x(2x+y)(\frac{z^2}{x}+z+y)}{(y+\sqrt{xz}+z)^2(\frac{z^2}{x}+z+y)}\geq \sum_{cyc}\frac{x}{\frac{z^2}{x}+z+y}=\sum_{cyc}\frac{x^2}{z^2+xz+xy}$$By Cauchy-Schwarz inequality $$\sum_{cyc}\frac{x^2}{z^2+xz+xy}\geq \frac{(x+y+z)^2}{(x^2+y^2+z^2+2xy+2yz+2zx)}$$Q.E.D
08.07.2024 16:35
Let$$x=2a,y=b,z=3c$$, bacuse the inequality is homogeneous we can let $x+y+z=1$$$\Rightarrow$$$$\sum_{cyc}\frac{x(2x+y)}{(y+\sqrt{xz}+z)^2}\geq 1 $$by AM-GM $$\sum_{cyc}\frac{x(2x+y)}{(y+\sqrt{xz}+z)^2}\geq \sum_{cyc}\frac{x(2x+y)}{(\frac{1}{2}x+y+\frac{3}{2}z)^2}$$while $$\sum_{cyc}\frac{x(2x+y)}{(\frac{1}{2}x+y+\frac{3}{2}z)^2} = \sum_{cyc}\frac{4x(2x+y)}{(3(x+y+z)-(2x+y))^2}=\sum_{cyc}\frac{4x(2x+y)}{(3-(2x+y))^2}$$take the dirivative of the function $f(x)=\frac{x}{(3-x)^2}$ twice to get $f^{''}(x)=\frac{2(x+6)}{(3-x)^4}$ which is always positive when $0<x<3$ so we can apply Jenson's Inequality to get $$4\sum_{cyc}\frac{x(2x+y)}{(3-(2x+y))^2} \geq 4\frac{2x^2+2y^2+2z^2+xy+yz+zx}{(3-(2x^2+2y^2+2z^2+xy+yz+zx))^2}$$and it's easy to know that $f(x) \geq \frac{1}{4}$ when $1 \leq x< 2$ while it's trivial that $$1 = x^2+y^2+z^2+2xy+2yz+2zx \leq 2x^2+2y^2+2z^2+xy+yz+zx < 2x^2+2y+2z^2+4xy+4yz+4zx = 2 $$so $$\sum_{cyc}\frac{x(2x+y)}{(y+\sqrt{xz}+z)^2}\geq f(2x^2+2y^2+2z^2+xy+yz+zx) \geq \frac{1}{4}*4 =1$$and we are done