Let $ABCD$ be a convex quadrilateral and let the diagonals $AC$ and $BD$ intersect at $O$. Let $I_1, I_2, I_3, I_4$ be respectively the incentres of triangles $AOB, BOC, COD, DOA$. Let $J_1, J_2, J_3, J_4$ be respectively the excentres of triangles $AOB, BOC, COD, DOA$ opposite $O$. Show that $I_1, I_2, I_3, I_4$ lie on a circle if and only if $J_1, J_2, J_3, J_4$ lie on a circle.
Problem
Source: Indian Team Selection Test 2015 Day 1 Problem 1
Tags: geometry, Hi
12.07.2015 02:19
Obviously $I_1,J_1,I_3,J_3$ are collinear on the internal bisector of $\angle AOB$ and $I_2,J_2,I_4,J_4$ are collinear on the internal bisector of $\angle BOC.$ In any $\triangle OAB$ we have the well-known identity $OA \cdot OB=OI_1 \cdot OJ_1$ and similarly $OC \cdot OD=OI_3 \cdot OJ_3$ $\Longrightarrow$ $OI_1 \cdot OI_3 \cdot OJ_1 \cdot OJ_3=OA \cdot OB \cdot OC \cdot OD$ and similarly we obtain $OI_2 \cdot OI_4 \cdot OJ_2 \cdot OJ_4=OA \cdot OB \cdot OC \cdot OD.$ Thus from these relations, we conclude that $I_1,I_2,I_3,I_4$ are concyclic $\Longleftrightarrow$ $OI_1 \cdot OI_3=OI_2 \cdot OI_4$ $\Longleftrightarrow$ $OJ_1 \cdot OJ_3=OJ_2 \cdot JI_4$ $\Longleftrightarrow$ $J_1,J_2,J_3,J_4$ are concyclic.
06.04.2021 07:09
Lemma 1: In $\triangle ABC$ if $I,E$ are the incenter and A-excenter, we have that \[AI\cdot AE = AB\cdot AC\]Proof: Note that $\triangle ABI \sim \triangle AEC$ due to angle chase, which yields \[\frac{AB}{AI}=\frac{AE}{AC}\Longrightarrow AI\cdot AE = AB\cdot AC \]$\square$ Label the incenters as $I_1,I_2,I_3,I_4$ and the excenters $E_1,E_2,E_3,E_4$, thus we clearly have that $(E_1,I_1,P,I_3,E_3)$ and $(E_4,I_4,P,I_2,E_4)$ are collinear. We now reinterpret the concyclic conditions as \[PI_2\cdot PI_4=PI_1\cdot PI_3\Longleftrightarrow \frac{PI_2\cdot PI_4}{PI_1\cdot PI_3}=1 \quad \quad (1)\]\[PE_2\cdot PE_4=PE_1\cdot PE_3 \Longleftrightarrow \frac{PE_2\cdot PE_4}{PE_1\cdot PE_3}=1 \quad \quad (2)\] I now note that due to Lemma 1, \[\frac{PI_2\cdot PI_4}{PI_1\cdot PI_3}\cdot \frac{PE_2\cdot PE_4}{PE_1\cdot PE_3} = \frac{(PI_2\cdot PE_2)(PI_4\cdot PE_4)}{(PI_1\cdot PE_1)(PI_3\cdot PE_3)} = \frac{(PB\cdot PC)\cdot(PA\cdot PD)}{(PA\cdot PB)(PC\cdot PD)}=1\]Thus, we clearly have that the two concyclic conditions occur if and only if the other one occurs.
24.04.2021 19:14
Lemma: In a tringle $ABC$ with incenter $I$ and A-excenter $J_A$, we have $AI\cdot AJ_A=AB\cdot AC$. Proof: By the incenter-excenter lemma, there exists a circle $\omega$ through the points $I,J_A,B,C$. Let the second intersection of line $AC$ with $\omega$ be $X$; it follows from $\omega$ being centered on the $A$ angle bisector that $AX=AB$. Our claim is then immediate from PoP. Notice that $I_1,J_1,I_3,J_3$ are all collinear with $O$ since they lie on the line bisecting angles $AOB$ and $COD$. Similarly, $I_2,J_2,I_4,J_4$ are all collinear with $P$ on the line bisecting angles $BOC$ and $DOA$. The given condition is then equivalent to that $$OJ_1\cdot OJ_3=OJ_2\cdot OJ_4\stackrel{?}{\iff} OI_1\cdot OI_3=OI_2\cdot OI_4$$Notice that $OJ_1\cdot OJ_3\cdot OI_1\cdot OI_3=(OJ_1\cdot OI_1)\cdot (OJ_3\cdot OI_3)=OA\cdot OB\cdot OC\cdot OD$ by our lemma, and similarly $OJ_2\cdot OJ_4\cdot OI_2\cdot OI_4=(OJ_2\cdot OI_2)\cdot (OJ4_\cdot OI_4)=OB\cdot OC\cdot OD\cdot OA$. Our desired result immediately follows from the above two products being equal.
27.06.2021 00:40
09.11.2021 21:12
Uh the notation is a little different but anyway, We begin with the following lemma Lemma In a triangle $ABC$ with incentre $I$ and excentre $I_A$ \[AI \cdot AI_A = AB \cdot AC \] Proof We use angle chasing and prove that $\Delta AIB \sim \Delta AI_AC$. The claimed lemma follows Label the incenters of $AB,BC,CD,DA$ as $I_1,I_2,I_3,I_4$ and the excentres as $E_1,E_2,E_3,E_4$ Note that \begin{align*} PA\cdot PB\cdot PC \cdot PD &= PA\cdot PB\cdot PC \cdot PD\\ (PA\cdot PB) \cdot (PC \cdot PD) &= (PA\cdot PD) \cdot (PB\cdot PC)\\ (PI_1\cdot PE_1) \cdot (PI_3 \cdot PE_3) &= (PI_4\cdot PE_4) \cdot (PI_2\cdot PE_2)\\ \end{align*} Note that \[PI_1\cdot PI_3 = PI_2 \cdot PI_4 \iff PE_1\cdot PE_3 = PE_2 \cdot PE_4\] However the LHS is true iff the 4 incentres lie on a circle and hence by power of point $P$ we are done!
22.12.2021 23:22
14.03.2022 22:45
28.03.2022 16:16
Version of the problem I received: Rewritten Problem wrote: Diagonals $\overline{AC}$ and $\overline{BD}$ of convex quadrilateral $ABCD$ meet at $P$. Prove that the incenters of the triangles $\triangle PAB, \triangle PBC, \triangle PCD, \triangle PDA$ are concyclic if and only if their $P$-excenters are also concyclic. The key realization is the following: Lemma: In a triangle $\triangle ABC$ with incenter $I$ and $A$-excenter $I_A$, we have $\triangle ABI \sim \triangle AI_AC$. Proof: We clearly have $\angle BAI=\angle I_AAC$. Further, $$\angle AIB=90^\circ+\frac{\angle ACB}{2}=90^\circ+\angle ACI=\angle ACI_A$$since $\angle ICI_A=90^\circ$. $\blacksquare$ From this, we obtain $AB\cdot AC=AI \cdot AI_A$. Now let $I_1,J_1$ denote the incenter and $P$-excenter respectively of $\triangle PAB$, and define $I_2,J_2,I_3,J_3,I_4,J_4$ cyclically. Then by Power of a Point we have \begin{align*} (PI_1)(PI_3)&=(PI_2)(PI_4) & &\iff\\ (PI_1)(PI_3)(PA)(PB)(PC)(PD)&=(PI_2)(PI_4)(PA)(PB)(PC)(PD) & &\iff\\ (PJ_1)(PJ_3)&=(PJ_2)(PJ_4), \end{align*}so $I_1I_2I_3I_4$ is cyclic iff $J_1J_2J_3J_4$ is cyclic. $\blacksquare$
28.01.2023 22:31
Uhh, similarities have ever been my weakness and it clearly shows how bad I am actually at geometry with this problem, from the time I am dying on this problem for so long . Also, figure is more like Ninja Hattori . We relabel the points for easier naming as in the figure, and label the incenters and excenters too. Now, $\angle PI_1A_1=90^{\circ} +\dfrac{\angle PA_2A_1}{2}=90^{\circ}+\angle PA_2I_1=\angle PA_2J_1$, and $\angle A_1PI_1=\dfrac{A_1PA_2}{2}=\angle J_1PA_2\implies \triangle PA_1I_1\sim\triangle PJ_1A_2\implies\dfrac{PA_1}{PJ_1}=\dfrac{PI_1}{PA_2}\implies PI_1\cdot PJ_1=PA_1\cdot PA_2$. Similarly, we also derive the followings, \begin{align} PI_1\cdot PJ_1=PA_1\cdot PA_2\\ PI_2\cdot PJ_2=PA_2\cdot PA_3\\ PI_3\cdot PJ_3=PA_3\cdot PA_4\\ PI_4\cdot PJ_4=PA_4\cdot PA_1 \end{align} $(1)\times (3)$ and $(2)\times (4)$ gives $PI_1\cdot PJ_1\cdot PI_3\cdot PJ_3=PA_1\cdot PA_2\cdot PA_3\cdot PA_4=PI_2\cdot PJ_2\cdot PI_4\cdot PJ_4$. It is now clear that $I_1I_2I_3I_4$ is cyclic $\iff$ $J_1J_2J_3J_4$ is cyclic.
01.02.2023 07:06
Let $J_1, J_2, J_3, J_4$ be the four excenters. In general, I claim that in an arbitrary triangle $ABC$, the triangles $ABI$ and $AI_AC$ are similar. This can simply be done by computing $\angle AI_AC = \frac B2$. Thus $$PI_1 \cdot PJ_1 \cdot PI_3 \cdot PJ_3 = PA \cdot PB\cdot PC \cdot PD = PI_2 \cdot PJ_2 \cdot PI_4 \cdot PJ_4,$$which suffices.
25.12.2023 22:19
Since $\triangle PAI_1\sim\triangle PJ_1B$, we have $PI_1\cdot PJ_1=PA\cdot PB$. Combining this with similar relations for the other sides, we have \[PI_1\cdot PJ_1\cdot PI_3\cdot PJ_3=PA\cdot PB\cdot PC\cdot PD=PI_2\cdot PJ_2\cdot PI_4\cdot PJ_4\]which yields the desired conclusion by PoP. $\square$
03.02.2024 07:14
Let the incenter of $\triangle PAB$ be $W$ and the excenter be $W_P$. Define points $X$, $Y$, $Z$ similarly. Notice that $\triangle W_PAP \sim \triangle BWP$. By Fact $5$, we have $AWBW_P$ concyclic, and by inscribed angles we have $\angle{AW_PW} = \angle \frac{B}{2} = \angle WBP$. We also have $\angle APW = \angle WPB = \angle \frac{P}{2}$, so we are done by $AA$. From this, we find that $AP \cdot BP = PW \cdot PW_P$. By similar triangles, we have \[\frac{WP}{AP} = \frac{BP}{W_PW} \implies AP \cdot BP = PW \cdot PW_P.\]so it is true. By Power of a Point, we have $PW \cdot PY = PX \cdot PZ \iff PW_P \cdot PY_P = PX_P \cdot PZ_P$ being equivalent to the $P-$excenters being concyclic if and only if the incenters are concyclic. $\newline$ Due to symmetry, we can apply our previous claims to get \[PW \cdot PW_P \cdot PY \cdot PY_P = PX \cdot PX_P \cdot PZ \cdot PZ_P = AP \cdot BP \cdot CP \cdot DP\]\[\implies PW \cdot PY = PX \cdot PZ \iff PW_P \cdot PY_P = PX_P \cdot PZ_P\]So we are done. $\blacksquare$
26.06.2024 01:58
Define $I_{\triangle}$ and $J_{\triangle}$ to be the incenter and $P$-excenter of $\triangle$, respectively. Claim. $\triangle PAI_{\triangle PAD} \sim \triangle PJ_{\triangle PAD}D$ Proof. Note that $AI_{\triangle PAD}DJ_{\triangle PAD}$ is cyclic as $\angle I_{\triangle PAD}AJ_{\triangle} = \angle J_{\triangle PAD}DI_{\triangle} = 90^{\circ}$. Therefore, \begin{align*} \angle PAI_{\triangle PAD} = I_{\triangle PAD}AD = \angle I_{\triangle PAD}J_{\triangle PAD}D. \end{align*}As $\angle APJ_{\triangle PAD} = \angle J_{\triangle PAD}PD$, then $\triangle PAI_{\triangle PAD} \sim \triangle PJ_{\triangle PAD}D$, as desired. $\blacksquare$ Thus, by similar triangles, then: \begin{align*} \dfrac{AP}{PI_{\triangle PAD}} = \dfrac{J_{\triangle PAD}P}{PD} \quad \longrightarrow \quad AP \cdot PD = J_{\triangle PAD}P \cdot PI_{\triangle PAD}. \end{align*}Thus, \[ \begin{cases} AP \cdot PB &= J_{\triangle PBA}P \cdot PI_{\triangle PBA} \\ BP \cdot PC &= J_{\triangle PCB}P \cdot PI_{\triangle PCB} \\ CP \cdot PD &= J_{\triangle PDC}P \cdot PI_{\triangle PDC} \\ DP \cdot PA &= J_{\triangle PAD}P \cdot PI_{\triangle PAD}. \end{cases} \]Therefore: \begin{align*} AP \cdot BP \cdot CP \cdot PD &= AP \cdot BP \cdot CP \cdot PD \\ J_{\triangle PBA}P \cdot PI_{\triangle PBA} \cdot J_{\triangle PDC}P \cdot PI_{\triangle PDC} &= J_{\triangle PCB}P \cdot PI_{\triangle PCB} \cdot J_{\triangle PAD}P \cdot PI_{\triangle PAD} \\ \left(J_{\triangle PBA}P \cdot PJ_{\triangle PDC}\right) \left(I_{\triangle PBA}P \cdot PI_{\triangle PDC}\right) &= \left(J_{\triangle PCB}P \cdot PJ_{\triangle PAD}\right) \left(I_{\triangle PCB}P \cdot PI_{\triangle PAD}\right) \end{align*}Now, if the incenters are concyclic, then by power of point, $I_{\triangle PBA}P \cdot PI_{\triangle PDC} = I_{\triangle PCB}P \cdot PI_{\triangle PAD}$. So \[ J_{\triangle PBA}P \cdot PJ_{\triangle PDC} = J_{\triangle PCB}P \cdot PJ_{\triangle PAD}, \]which by power of point implies the excenters are concyclic. Instead, if the excenters are concyclic then $J_{\triangle PBA}P \cdot PJ_{\triangle PDC} = J_{\triangle PCB}P \cdot PJ_{\triangle PAD}$, so \[ I_{\triangle PBA}P \cdot PI_{\triangle PDC} = I_{\triangle PCB}P \cdot PI_{\triangle PAD}, \]which implies the incenters are concyclic by power of point. Thus, the incenters are concyclic if and only if the excenters are concyclic, as desired.
26.06.2024 15:34
Note the well known property that $OA \cdot OB = OI_1 \cdot OJ_1$. The proof is by similarity of triangles $AOI_1, J_1OB$. Similarly, $OI_3 \cdot OJ_3 = OC \cdot OD$. Therefore, $(OI_1 \cdot OI_3) \cdot (OJ_1 \cdot OJ_3) = OA \cdot OB \cdot OC \cdot OD = (OI_2 \cdot OI_4) \cdot (OJ_2 \cdot OJ_4)$. Now $J_1, I_1, O, I_3, J_3$ are collinear, as are $J_2, I_2, O, I_4, J_4$, so $I_1I_2I_3I_4 \text{ cyclic } \iff OI_1 \cdot OI_3 = OI_2 \cdot OI_4 \stackrel{\rm \text{above relation}}{\rm \iff} OJ_1 \cdot OJ_3 = OJ_2 \cdot OJ_4 \iff J_1J_2J_3J_4 \text{ cyclic }$. $\square$