Problem

Source:

Tags: IMO Shortlist, number theory, Sequence, prime divisors



Let $c \ge 1$ be an integer. Define a sequence of positive integers by $a_1 = c$ and \[a_{n+1}=a_n^3-4c\cdot a_n^2+5c^2\cdot a_n+c\] for all $n\ge 1$. Prove that for each integer $n \ge 2$ there exists a prime number $p$ dividing $a_n$ but none of the numbers $a_1 , \ldots , a_{n -1}$ . Proposed by Austria