Problem

Source:

Tags: IMO Shortlist, algebra, algorithm, combinatorics



For a sequence $x_1,x_2,\ldots,x_n$ of real numbers, we define its $\textit{price}$ as \[\max_{1\le i\le n}|x_1+\cdots +x_i|.\] Given $n$ real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price $D$. Greedy George, on the other hand, chooses $x_1$ such that $|x_1 |$ is as small as possible; among the remaining numbers, he chooses $x_2$ such that $|x_1 + x_2 |$ is as small as possible, and so on. Thus, in the $i$-th step he chooses $x_i$ among the remaining numbers so as to minimise the value of $|x_1 + x_2 + \cdots x_i |$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price $G$. Find the least possible constant $c$ such that for every positive integer $n$, for every collection of $n$ real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G\le cD$. Proposed by Georgia