Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Find the minimum value of the expression \[A=\dfrac{2-a^3}a+\dfrac{2-b^3}b+\dfrac{2-c^3}c.\]
Problem
Source:
Tags: inequalities
26.06.2015 16:41
We will prove that the minimum is $3$ Indeed, note that: $A=\sum \frac{2 - a^3}{a}=\sum \frac{2}{a}-\sum a^2$ Using the initial condition: $\sum a^2=9-2(ab+bc+ca)$ $\sum\frac{2}{a}=\frac{2(ab+bc+ca)}{abc}$ $(ab+bc+ca)^2\geq 3abc(a+b+c)=9abc$ It suffices to prove: $\frac{18}{q}+2q\geq 6$, which is obvious by AM-GM. Equality holds iff $a=b=c=1$ Q.E.D
26.06.2015 20:00
we have $\sum\frac{2 - a^3}{a}=\sum \frac{2}{a}-\sum a^2=\sum \frac{2}{a} +2\sum ab -9$ now by AM-GM we have $\sum \frac{2}{a}+2\sum ab \ge 12$ so that $A=\sum \frac{2}{a} +2\sum ab -9\ge 3$ where equality occurs iff $a=b=c=1$ so we are done
26.06.2015 22:41
My solution So by basic transformations we get $A=2B-9$ So it is equivalent to find the min of $B$ where $B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+ab+bc+ca$ By AM-GM $B^2\ge 4(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(ab+bc+ca)=4(2(a+b+c)+\frac{ab}{c}+\frac{ac}{b}+\frac{bc}{a}) \ge12(a+b+c)=36$ So $B\ge6$ And $A=2B-9\ge12-9=3$ Equality holds for $a=b=c=1$
27.06.2015 00:02
$A=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\{(a+b+c)^2-2(ab+bc+ca)\}$ $=2(ab+bc+ca)\left(\frac{1}{abc}+1\right)-9$ $\therefore (A+9)^2=4(ab+bc+ca)^2\left(\frac{1}{abc}+1\right)^2$ $\geq 4\cdot 3abc(ab+bc+ca)\left(\frac{1}{abc}+1\right)^2=36abc\left(\frac{1}{abc}+1\right)^2$ $\geq 36abc\cdot \frac{4}{abc}=12^2$, since $A+9>0$, we have $A+9\geq 12 $, yielding $A\geq 3.$ Equality holds when $a=b=c=1.$, therefore the minimum value of $A$ is 3.
27.06.2015 06:27
Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Prove that$$\dfrac{2-a^5}{a^2}+\dfrac{2-b^5}{b^2}+\dfrac{2-c^5}{c^2}\geq3.$$
27.06.2015 08:51
Who is deleting my posts on this topic? Is pointing out to wrong solutions getting banned on this forum? Why are you deleting "solutions" that come out to be incorrect. Learning from mistakes is also important. This is forum and not a magazine where solutions are listed below problem statement.
27.06.2015 11:42
sqing wrote: Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Prove that$$\dfrac{2-a^5}{a^2}+\dfrac{2-b^5}{b^2}+\dfrac{2-c^5}{c^2}\geq3.$$ Let $f(x)=\frac{2}{x^2}-x^3$. Hence, $f''(x)=\frac{12}{x^4}-6x$, which gives that $f$ is a convex function on $\left(0,\sqrt[5]{2}\right]$. Let $\{b,c\}\subset\left(0,\sqrt[5]{2}\right]$. Hence, by Jensen $f(b)+f(c)\geq2f\left(\frac{b+c}{2}\right)=2f\left(\frac{3-a}{2}\right)$. Thus, it remains to prove that $2\left(\frac{2}{\left(\frac{3-a}{2}\right)^2}-\left(\frac{3-a}{2}\right)^3\right)+\frac{2}{a^2}-a^3\geq3$, which is $(a-1)^2(24+32a-53a^2+21a^3+a^4-a^5)\geq0$, which is true even for all $a\in(0,3)$. Let $0<a\leq\sqrt[5]2\leq b\leq c$. Hence, by Karamata $\sum_{cyc}f(a)\geq f(a)+f\left(\sqrt[5]2\right)+f\left(b+c-\sqrt[5]2\right)$. Thus, it remains to prove that $\frac{2}{a^2}-a^3+\frac{2}{\left(3-\sqrt[5]2-a\right)^2}-\left(3-\sqrt[5]2-a\right)^3\geq3$, which is true even for all $a\in(0,1.5)$.
27.06.2015 12:00
We can use also $uvw$: Let $a+b+c=3u$, $ab+ac+bc=3v^2$ and $abc=w^3$. Hence, our inequality is equivalent to $f(w^3)\geq0$,where $f$ is a decreasing function. Hence, $f$ gets a minimal value for maximal value of $w^3$, which happens for equality of two variables and the rest is easy.
27.06.2015 12:13
Does anyone have idea about how many students could solve it on contest? It seems that 2nd problem was harder than the 3rd one, doesn' it?
27.06.2015 21:27
About 10 % of all participants seemed to have been able to solve the problem.
27.06.2015 22:54
My solution : $2/a+2/b+2/c -a^2-b^2-c^2\ge 3 $ we need to prove which is equvalent to $2/a+2/b+2/c+2ab+2bc+2ac\ge12$ $1/a+1/b+1/c+ab+ac+bc=(ab+ac+bc)/abc+ab+bc+ac\ge 3(a+b+c)/(ab+bc+ac)+ab +bc+ac $$(ab+bc+ac)^2\ge \sum3^2bc$ and we are basically done.
28.06.2015 00:52
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+bc+ca+ab=\frac{bc+ca+ab}{abc}+bc+ca+ab$ $\geq\frac{3(a+b+c)}{bc+ca+ab}+bc+ca+ab=\frac{9}{bc+ca+ab}+bc+ca+ab\geq6,$ $\dfrac{2-a^3}a+\dfrac{2-b^3}b+\dfrac{2-c^3}c=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+bc+ca+ab\right)-9\geq3.$ http://www.artofproblemsolving.com/community/c6h1106910p5022568: Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Prove that$$\dfrac{1-a^3}a+\dfrac{1-b^3}b+\dfrac{1-c^3}c\geq -0.0724...$$ Stronger than Jbmo 2015
28.06.2015 15:31
The minimum is $3$. Let $a=\frac{3x}{x+y+z},b=\frac{3y}{x+y+z},c=\frac{3z}{x+y+z}$.Then we have to prove that $2(x+y+z)^3(xy+yz+zx)\ge 9xyz(x+y+z)^2+27xyz(x^2+y^2+z^2)$.Let $a+b+c=3u,ab+bc+ca=3v^2,abc=w^3$.So we have to prove that $v^2(u^3+w^3)\ge 2w^3u^2$. It's easy to prove that $v^4\ge uw^3$,so $v^2(u^3+w^3)\ge \sqrt{uw^3}\cdot 2\sqrt{u^3w^3}=2w^3u^2$,which ends our proof.
28.06.2015 16:50
Could someone please explain to me how in "aditya21" post above they got $\sum\frac{2}{a} + 2\sum ab \ge 12$ using AM-GM. Could you also please explain what I am doing wrong: $\sum\frac{2}{a} + 2\sum ab = \sum\frac{1}{a} + \sum\frac{1}{a} + \sum 2ab \ge 9 \times \sqrt[9]{\frac{1}{a.a.b.b.c.c} \times 2ab.2bc.2ca} \ge 9\times \sqrt[9]{8} \ge 9\sqrt[3]{2} \ne 12$
28.06.2015 19:24
We have $\sum\frac{2}{a} + \sum 2ab \ge 12\sqrt[6]{abc}$ with AM-GM and equality when $a=b=c$. Or $a+b+c=3$ so $a=b=c=1$ and $\sum\frac{2}{a} + \sum 2ab \ge 12\sqrt[6]{abc}=12\sqrt[6]{1\times 1\times 1}=12$.
28.06.2015 21:44
rgreenanswers wrote: Could someone please explain to me how in "aditya21" post above they got $\sum\frac{2}{a} + 2\sum ab \ge 12$ using AM-GM. Could you also please explain what I am doing wrong: $\sum\frac{2}{a} + 2\sum ab = \sum\frac{1}{a} + \sum\frac{1}{a} + \sum 2ab \ge 9 \times \sqrt[9]{\frac{1}{a.a.b.b.c.c} \times 2ab.2bc.2ca} \ge 9\times \sqrt[9]{8} \ge 9\sqrt[3]{2} \ne 12$ Your AM-GM's equality case is $\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=2ab=2bc=2ac$ which is impossible since we know $a+b+c=3$. This is where you're doing wrong
28.06.2015 22:20
Ok that makes sense. Thanks to both of you!
30.06.2015 23:41
It is sufficient to prove that $(ab+bc+ca)(abc+1)\geq6abc$, or $a^2b^2c+a^2bc^2+ab^2c^2+ab+bc+ca\geq6abc$. But by AM-GM, $a^2b^2c+ab\geq2\sqrt{a^3b^3c}=2ab\sqrt{abc}$. Thus, $LHS=\sum ab+\sum a^2b^2c\geq2\sqrt{abc}\sum ab \geq2\sqrt{abc}\sqrt{3abc(a+b+c)}=6abc$, $Q.E.D.$
01.08.2015 00:37
Rearrange the expression as $2\sum\dfrac{1}{a} - \sum a^2 = 2\sum\dfrac{1}{a} - \left(\sum a\right)^2 + 2\sum ab = \left(2\sum ab\right)\left(\dfrac{1}{abc} + 1\right) - 9$. Note that $\dfrac{1}{abc} \ge 1$ by AM-GM, so our rearranged expression is greater than or equal to $4\left(\sum ab\right) - 9$. Applying AM-GM again yields $4\left(\sum ab\right) - 9 \ge 3$, and equality holds when $a=b=c=1$.
16.11.2018 03:26
Can someone explain how to prove this? Quote: $\sum \frac{2}{a}+2\sum ab \ge 12$ by AM-GM Looking at the posts above, I do not see a valid proof of this, I may be mistaken.
16.11.2018 03:38
neverlose wrote: Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Find the minimum value of the expression \[A=\dfrac{2-a^3}a+\dfrac{2-b^3}b+\dfrac{2-c^3}c.\] a,b,c>0,a+b+c=3 (9-8a^3)/a+(9-8b^3)/b+(9-8b^3)/b>=3
16.11.2018 03:51
AM-GM is actually $\sum \frac{2}{a}+2\sum ab \ge 12 (abc)^{1/6} $ which is not enough to show the LHS is greater then or equal to one...?
17.02.2020 23:49
Let's consider that $f(x)=\frac{2-x^3}{x}$. It's obvious that $f''(x)>0$ Hence we can attain $f(\frac{a+b+c}{3})\leq\frac{f(a)+f(b)+f(c)}{3}$ from Jensen Inequality $\Longrightarrow f(1)=1\leq\frac{f(a)+f(b)+f(c)}{3}\Longrightarrow 3\leq f(a)+f(b)+f(c)$
20.02.2020 00:21
CrazyMathlete wrote: Let's consider that $f(x)=\frac{2-x^3}{x}$. It's obvious that $f''(x)>0$ Are you sure?
25.02.2020 04:06
The answer is $\boxed{3}$, attained at $a=b=c=1$. First we take care of the case where one of $a,b,c$ is at least 2; WLOG let $c \geq 2$. Then $a,b \leq 1$ and since the $f$ is concave up on $(0,1]$ we have $f(a)+f(b) \geq 2 f( \frac{3-c}{2} )$; thus $f(a)+f(b)+f(c) \geq 2 f( \frac{3-c}{2} )+f(c)$ which, after some calculation, ends up greater than 3 for all $c \geq 2$. Now we show if all of $a, b, c$ are in the range $(0,2]$ then the quantity in the problem is at least $3$. I claim that $\frac{2-x^3}{x} \geq -4x+5$ for all $x \in (0,2]$. Indeed, after expansion and rearrangement it becomes $(x-1)^2(x-2) \leq 0$, which is obvious for $x \in (0,2]$ (equality occurs at $x=1$). Thus we have $$\frac{2-a^3}{a}+\frac{2-b^3}{b}+\frac{2-c^3}{c} \geq -4(a+b+c)+15 = 3$$, as desired. We see equality occurs iff $a, b, c$ are all $1$.
15.05.2020 22:40
silouan wrote: CrazyMathlete wrote: Let's consider that $f(x)=\frac{2-x^3}{x}$. It's obvious that $f''(x)>0$ Are you sure? Yes, you can check it. Btw,i did not see ur answer, sorry
12.02.2021 12:35
I think this one was proposed by Greece!
12.02.2021 13:09
neverlose wrote: Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Find the minimum value of the expression \[A=\dfrac{2-a^3}a+\dfrac{2-b^3}b+\dfrac{2-c^3}c.\]
$\blacksquare$
12.02.2021 15:02
neverlose wrote: Let $a,b,c$ be positive real numbers such that $a+b+c = 3$. Find the minimum value of the expression \[A=\dfrac{2-a^3}a+\dfrac{2-b^3}b+\dfrac{2-c^3}c.\] let f(x)=(2-x^3)/x
16.11.2021 04:43
Let $a,b,c$ be positive real numbers such that $a^2+2bc=3$. Prove that$$\dfrac{2-a^3}{a}+\dfrac{2-b^3}{b}+\dfrac{2-c^3}{c}\geq3.$$$$\dfrac{2-a^5}{a^2}+\dfrac{2-b^5}{b^2}+\dfrac{2-c^5}{c^2}\geq3.$$
01.11.2022 01:30
Here is a quite painful solution using the method of linearization (tangent line trick). Perhaps some of the details can be simplified, but I doubt the simplification could be substantial. Let us firstly look for constants $m$ and $n$ such that $\frac{2-t^3}{t} \geq mt+n$ for $t\in (0,3)$ with equality at $t=1$. Equivalently, $t^3 + mt^2 + nt - 2 \leq 0$. In order for $1$ to be a double root, Horner's method leads to the equations $m+n = 1$ and $3 + 2m + n = 0$, whence $n=5$, $m=-4$ and the remaining multiplier is $t-2$, i.e. we have the equivalent $(t-2)(t-1)^2 \leq 0$, which unfortunately holds only for $t\in (0,2]$. In other words, if $a,b,c \in (0,2]$, then the expression is at least $3\cdot 5 - 4(a+b+c) = 3$ and we are done. From now on we will use that $\frac{2-t^3}{t}$ decreases for $t > 0$ since the numerator decreases while the positive denominator increases. Now suppose without loss of generality $c \in (2,3)$ and $a+b \in (0,1)$. Then $\frac{2-c^3}{c} > -\frac{25}{3}$ due to $(c-3)(3c^2+9c+2) < 0$. If it turns out that each of $\frac{2-a^3}{a}$ and $\frac{2-b^3}{b}$ exceeds $\frac{17}{3}$, then we will be done. Trial and error leads to $\frac{2-t^3}{t} \geq \frac{53}{9}$ for $t\in (0,\frac{1}{3}]$ (equivalent to $(3t-1)(3t^2+t+18) \leq 0$). So we are done if $a,b \leq \frac{1}{3}$. Let $b > \frac{1}{3}$, so $c \in (2, \frac{8}{3})$. Then $\frac{2-c^3}{c} > -\frac{229}{36}$ because of $(3t-8)(12t^2+32t+9) < 0$ and we shall be done if $\frac{2-a^3}{a} + \frac{2-b^3}{b} > \frac{337}{36}$. But $\frac{2-t^3}{t} \geq \frac{121}{25} > \frac{337}{72}$ for $t\in (0,\frac{2}{5}]$ due to $(5t-2)(5t^2+2t+25) \leq 0$. So for $a,b \leq \frac{2}{5}$ we are done. Let $b>\frac{2}{5}$. Then $c<\frac{13}{5}$ and $\frac{2-c^3}{c} > -6$, also $\frac{2-b^3}{b} > 1$ for $b<1$, so we are done if $\frac{2-a^3}{a} > 8$, i.e. for $a<\frac{6}{25}$. So we may assume $a\in (\frac{6}{25},\frac{1}{2}), b\in (\frac{2}{5}, \frac{19}{25})$, $c\in (2,\frac{59}{25})$. Then $\frac{2-c^3}{c} > -4$,$75$ while the other two exceed in total $3$,$875$ for $a,b < \frac{12}{25}$. So we are up to $a\in (\frac{6}{25},\frac{1}{2})$, $b \in (\frac{12}{25}, \frac{19}{25})$, $c \in (2, \frac{57}{25})$. Then $\frac{2-c^3}{c} > -4$,$35$ and we would like $\frac{2-a^3}{a} + \frac{2-b^3}{b} > 7$,$35$, which is true for $a < \frac{9}{25}$ and $b<\frac{19}{25}$. So now $a\in (\frac{9}{25}, \frac{1}{2})$, $b\in (\frac{12}{25}, \frac{16}{25})$, $c \in (2, \frac{54}{25})$. Respectively, $\frac{2-c^3}{c} > -3$,$74$ and we want $\frac{2-a^3}{a} + \frac{2-b^3}{b} > 6$,$74$, which holds for $a \leq \frac{47}{100}$, $b<\frac{16}{25}$. We have reached $a\in (\frac{47}{100}, \frac{1}{2}), b\in (\frac{12}{25}, \frac{53}{100})$, $c\in (2, \frac{41}{20})$. Here $\frac{2-a^3}{a} > \frac{15}{4}$, $\frac{2-b^3}{b} > 3$ and $\frac{2-c^3}{c} > -3$,$25$, so the main sum exceeds $3$, wohooo!
07.04.2023 19:49
$LHS=2 \sum \frac{1}{a}-\sum a^2=2\sum \frac{1}{a}-((a+b+c)^2-2(ab+bc+ca)) =2\sum \frac{1}{a}+2\sum ab -9=2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+ab+bc+ca)-9$ Let's prove that $\sum \frac{1}{a}+\sum ab \geq 6$ $(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+(ab+bc+ca) \geq 6$ $\frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+(ab+bc+ca)}{2} \geq 3$ By AM-GM $LHS \geq \sqrt[3]{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(ab+bc+ca)} \geq 3$ $(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(ab+bc+ca) \geq 9$ $2(a+b+c)+\sum \frac{ab}{c} \geq 9$ $\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b} \geq 3$ The last inequality is true because $LHS=\sum(\frac{ab}{2c}+\frac{bc}{2a}) \geq \sum 2 \sqrt{\frac{ab^2c}{4ac}}=\sum b=3$
29.03.2024 12:53
I have A>=-9
07.01.2025 14:34
i still dont understand the concept of chebyshev but can we apply it on the 2ab+2bc+2ca