Let $ABC$ be an acute triangle with $AB \neq AC$ . Also let $M$ be the midpoint of the side $BC$ , $H$ the orthocenter of the triangle $ABC$ , $O_1$ the midpoint of the segment $AH$ and $O_2$ the center of the circumscribed circle of the triangle $BCH$ . Prove that $O_1AMO_2$ is a parallelogram .
Problem
Source: Romania JBMO TST 2015 Day 1 Problem 1
Tags: geometry, parallelogram, circumcircle
14.05.2015 10:16
Let $ O $ be the circumcenter of $ \triangle ABC $. It's well-known that $ AH=2 \cdot OM $. Notice that $ O_2 $ is the reflection of $ O $ respects to $ BC $ since the reflection of $ H $ respects to $ BC $ lies on the circumcircle of $ \triangle ABC $ Thus, we have $ O_2M=OM=\frac{1}{2} \cdot AH=AO_1 $, then it's trivial that the conclusion follows.
17.05.2015 04:47
Working over $\mathbb{C}$, it suffices to show that $o_1+m = o_2+a$. Placing the circumcenter of $ABC$ at the origin, we may take \[o_1=\frac 12\cdot (h+a) = a+\frac{b+c}{2}.\] Since $\angle BHC = \pi - \angle A$, the point $O_2$ is the just the reflection of the circumcenter of $ABC$ in line $BC$, which is the same as the the reflection of the origin in $m$. Thus, $o_2 = b+c$. Then \[o_1+m = a+\frac{b+c}{2}+\frac{b+c}{2} = a+b+c = (b+c) + a = o_2+a\] as desired$.\;\blacksquare$
17.05.2015 09:34
Dear Mathlinkers, posted before http://www.artofproblemsolving.com/community/c6t48f6h1084452_aze_jbmo_tst Sincerely Jean-Louis
10.12.2024 13:52
Easy complex bash $o_1+m=^{?}o_2+a$ $o_1=\frac{a+h}{2}=a+\frac{b+c}{2}$ $m=\frac{b+c}{2}$ By lemma $o_2=b+c$ $o_1+m=a+b+c$ $o_2+a=b+c+a$ $\to o_1+m=o_2+a$ qed.