Show that for $n \geq 5$, the integers $1, 2, \ldots n$ can be split into two groups so that the sum of the integers in one group equals the product of the integers in the other group.
Problem
Source: 2015 Flanders Mathematical Olympiad, Problem 4
Tags:
27.04.2015 20:44
27.04.2015 21:23
Very easy problem For $n=2m$ we take $A=\{1,m-1,2m\}$ and $B=\{1,…,n\}-A$. The product is equal to $2m(m-1)$ For $n=2m+1$ we take $A=\{1,m,2m\}$ and $B=\{1,…,n\}-A$. The product is equal to $2m^2$
08.05.2015 14:53
By the way, it is an old problem from JBMO shortlist : http://www.artofproblemsolving.com/community/c6h238634p1313580
22.04.2021 18:00
Sidenote: I am pretty new to writing proofs so any feedback on the correctness of this proof will be helpful.
22.06.2021 06:10
Solved with Christopher Qiu, Elliott Liu, Isaac Zhu, Jeffrey Chen, Kevin Wu, Rey Li, and Ryan Yang. Let the latter group be \(\{1,\frac n2-1,n\}\) or \(\{1,\frac{n-1}2,n-1\}\), depending on the parity of \(n\). The end.
07.06.2022 05:26
If $n$ is odd, use $\left\{1,\frac{n-1}{2},n-1\right\}$ as the product; the sum is $$\frac{n(n+1)-2-(n-1)-2(n-1)}{2}=\frac{(n-1)^2}{2}.$$If $n$ is even, use $\left\{1,\frac{n-2}{2},n\right\}$ as the product; the sum is $$\frac{n(n+1)-2-(n-2)-2n}{2}=\frac{n(n-2)}{2}.$$$\square$