Find all the functions $f:R\to R$ such that \[f(x^2) + 4y^2f(y) = (f(x-y) + y^2)(f(x+y) + f(y))\] for every real $x,y$.
Problem
Source: Turkey TST 2015
Tags: Turkey, TST, 2015, functional equation, algebra, function, Sophie Germain identity
01.04.2015 12:33
aloski1687 wrote: Find all the functions $f:R\to R$ such that \[f(x^2) + 4y^2f(y) = (f(x-y) + y^2)(f(x+y) + f(y))\] for every real $x,y$. Let $P(x,y)$ be the assertion $f(x^2)+4y^2f(y)=(f(x-y)+y^2)(f(x+y)+f(y))$ Subtracting $P(0,-x)$ from $P(0,x)$, we get $f(-x)=f(x)$ $\forall x$ Subtracting then $P(x,-y)$ from $P(x,y)$, we get $(f(x+y)-f(x-y))(f(y)-y^2)=0$ And so three cases : 1) $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ which indeed is a solution. 2) $f(x)=x^2$ $\forall x\ne 0$ and $f0)\ne 0$, and then $P(1,0)$ $\implies$ contradiction 3) $\exists u\ne 0$ such that $f(u)\ne u^2$, then this implies $f(x+2u)=f(x)$ $\forall u$ Then subtracting $P(0,x)$ from $P(0,x+2u)$, we get $(x+u)f(x)=0$ and so $f(x)=0$ $\forall x\ne -u$ But this implies $f(u)=0$ and so $f(-u)=0$ too and so $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$ which indeed is a solution.
01.01.2016 23:27
pco wrote: aloski1687 wrote: Find all the functions $f:R\to R$ such that \[f(x^2) + 4y^2f(y) = (f(x-y) + y^2)(f(x+y) + f(y))\]for every real $x,y$. Let $P(x,y)$ be the assertion $f(x^2)+4y^2f(y)=(f(x-y)+y^2)(f(x+y)+f(y))$ Subtracting $P(0,-x)$ from $P(0,x)$, we get $f(-x)=f(x)$ $\forall x$ Subtracting then $P(x,-y)$ from $P(x,y)$, we get $(f(x+y)-f(x-y))(f(y)-y^2)=0$ And so three cases : 1) $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ which indeed is a solution. 2) $f(x)=x^2$ $\forall x\ne 0$ and $f0)\ne 0$, and then $P(1,0)$ $\implies$ contradiction 3) $\exists u\ne 0$ such that $f(u)\ne u^2$, then this implies $f(x+2u)=f(x)$ $\forall u$ Then subtracting $P(0,x)$ from $P(0,x+2u)$, we get $(x+u)f(x)=0$ and so $f(x)=0$ $\forall x\ne -u$ But this implies $f(u)=0$ and so $f(-u)=0$ too and so $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$ which indeed is a solution. PCO , I have a real concern here .. $P(0,0) \implies 2f(0)^2=f(0)$ Then , we have : $2f(0)^2-f(0)=0$ ; $f(0)[2f(0)-1]=0$ ; thus we get : $f(0)=0$ and $f(0)=\frac{1}{2}$ Does this help , or it gets us nowhere ?
02.01.2016 12:25
JustinHerchel wrote: $P(0,0) \implies 2f(0)^2=f(0)$ Then , we have : $2f(0)^2-f(0)=0$ ; $f(0)[2f(0)-1]=0$ ; thus we get : $f(0)=0$ and $f(0)=\frac{1}{2}$ Does this help , or it gets us nowhere ? According to me, this does not help really to get the final solutions.
13.11.2016 15:04
My solution : Let $P(x,y)$ be the assertion of this equation. $P(0,0)$ $f(0)=0, \frac{1}{2}$ 1.If $f(0)=\frac{1}{2}$ If we subtract $P(0,-x)$ from $P(0,x)$ we ll get $f(y)=f(-y)$ $\Longrightarrow$ $1+4y^2f(y)=4f(y)^2$. $P(1,0)$ gives $f(1)=0,\frac{1}{2}$ (since $f(0)=\frac{1}{2}$ ) But these two values of $f(1)$ gives us contradiction. So $f(0)=0$ Let's again subtract $P(0,-x)$ from $P(0,x)$ we ll get $f(y)=f(-y)$ again. So $f(y)(f(y)-y^2)=0$. so Solutions are $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$. Murad Aghazade.
13.11.2016 15:13
Murad.Aghazade wrote: ... So $f(y)(f(y)-y^2)=0$. so Solutions are $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$. Certainly not You can only conclude : $\forall x$, either $f(x)=0$, either $f(x)=x^2$ And not, as you wrongly said : Either $f(x)=0$ $\forall x$, either $f(x)=x^2$ $\forall x$
13.11.2016 15:33
pco wrote: Murad.Aghazade wrote: ... So $f(y)(f(y)-y^2)=0$. so Solutions are $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$. Certainly not You can only conclude : $\forall x$, either $f(x)=0$, either $f(x)=x^2$ And not, as you wrongly said : Either $f(x)=0$ $\forall x$, either $f(x)=x^2$ $\forall x$ From here must I assume that there can exist $a,b$ such that $f(a)=0$ and $f(b)=b^2$. Please answer. Thanks!!!!
13.11.2016 16:08
$f(x)=\left(\frac{x+|x|}2\right)^2$ is neither $\equiv 0$, neither $\equiv x^2$ but is such that $f(x)(f(x)-x^2)=0$ $\forall x$
07.03.2017 03:46
pco wrote: Murad.Aghazade wrote: ... So $f(y)(f(y)-y^2)=0$. so Solutions are $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$. Certainly not You can only conclude : $\forall x$, either $f(x)=0$, either $f(x)=x^2$ And not, as you wrongly said : Either $f(x)=0$ $\forall x$, either $f(x)=x^2$ $\forall x$ Is there a way to correctly solve from here? Thanks! btw, is this the pointwise trap?
08.03.2017 11:38
@winnertakeover Normally, we will suppose that there exist a,b such that f(a)=0 and f(b)=b^2 then we will get contradiction. But I think to prove this we must have f(0)=0..
20.07.2017 22:14
winnertakeover wrote: pco wrote: Murad.Aghazade wrote: ... So $f(y)(f(y)-y^2)=0$. so Solutions are $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$. Certainly not You can only conclude : $\forall x$, either $f(x)=0$, either $f(x)=x^2$ And not, as you wrongly said : Either $f(x)=0$ $\forall x$, either $f(x)=x^2$ $\forall x$ Is there a way to correctly solve from here? Thanks! btw, is this the pointwise trap? Yes, this is exactly the dreaded pointwise trap.
03.01.2018 22:08
My argument (a lot longer than pco's argument), but analyzing both cases $f(0)=0$ and $f(0)=1/2$, and showing that the second is absurd. Let $P(x,y)$ be the given assertion. $P(0,y)$ gives us, $$ f(0)+4y^2f(y)=(f(-y)+y^2)2f(y)\implies f(0)+2y^2f(y)=2f(y)f(-y). $$Now, arguing similarly, and considering $P(0,-y)$, we get, $f(0)+2y^2f(-y)=2f(-y)f(y)=f(0)+2y^2f(y)$. Hence, $f(y)=f(-y)$. Plugging this in what was just found, we get, $$ 2f(y)^2 = 2y^2f(y)+f(0). $$Therefore, letting $y=0$, $f(0)=0$ or $f(0)=1/2$. $a)$ We first claim that $f(0)\neq 1/2$. Suppose that $f(0)=1/2$. Taking $y=0$, we get, $$ f(x^2)=f(x)\cdot (f(x)+\frac{1}{2}) \implies f(1)=f(1)(f(1)+\frac{1}{2}). $$Now, if $f(1)=0$, then, using $2f(y)^2=2y^2f(y)+f(0)$, with $y=1$, we get a contradiction. If $f(1) \neq 0$, then, $f(1)=f(1)(f(1)+1/2)$ gives us $f(1)=1/2$. However, with this, using $2f(1)^2=2f(1)+f(0)$ one more time, we get a contradiction, as left-hand-side is $1/2$; while the right-hand-side is $3/2$. $b)$ Therefore, $f(0)=0$. Namely, $f(y)^2 = f(y)y^2 \implies f(y)=0 \text{ or } f(y)=y^2$. In the assertion above, consider $P(x,-y)$, and notice that, $P(-x,y)$ gives, $$ f(x^2)+4y^2f(y)=(f(-x-y)+y^2)(f(-x+y)+f(y))=(f(x+y)+y^2)(f(x-y)+f(y)), $$using the fact that $f(\cdot)$ is even. On the other hand, the left-hand-side above is also equal to $(f(x-y)+y^2)(f(x+y)+f(y))$, hence, $$ f(x-y)f(x+y) + f(x-y)f(y)+y^2f(x+y)+y^2f(y) = f(x+y)f(x-y) + f(x+y)f(y)+y^2f(x-y)+y^2f(y), $$which implies, $$ f(x-y)(f(y)-y^2)=f(x+y)(f(y)-y^2). $$From here, we recover our first solution. If, for every $y$, $f(y)=y^2$, the entire assertion holds. Thus, $\boxed{f(x)=x^2,\forall x\in\mathbb{R}}$ is a solution. Next, suppose that, $\exists y_0$ such that $f(y_0)\neq y_0^2$. We clearly have, $y_0\neq 0$, since, $f(0)=0$. For this choice of $y_0$, and for every $x$, we get (keeping $x$ intact, and after letting $y=y_0$ above), $f(x-x_0)=f(x+x_0)$. Now, if $f$ is identically $0$, we recover a second solution, namely, $\boxed{f(x)=0,\forall x\in\mathbb{R}}$ is also a solution. Now, assume that, $\exists t$ such that $f(t)\neq 0$. In particular, since $f(y_0)\neq y_0^2\implies f(y_0)=0$, $t\neq y_0$ and $t\neq 0$. Taking $x=t-y_0$ above, we get, $$ f(t)=f(t-2y_0)\implies t^2 = (t-2y_0)^2 \implies t=t-2y_0 \text{ or } t=2y_0-t, $$where, $f(t)$ is necessarily $t^2$ (as it is not zero), hence, $f(t-2y_0)$ cannot be $0$, and thus, should be $(t-2y_0)^2$. If $t=t-2y_0$, then we get $y_0=0$, a contradiction. If $t=2y_0-t$, we get, $t=y_0$, again, a contradiction. Hence, no further solutions exists. Therefore, the answer is $\boxed{f(x)=x^2, \forall x\in\mathbb{R}}$ and $\boxed{f(x)=0,\forall x\in\mathbb{R}}$.
23.12.2018 09:35
@winnertakeover Substituting $y=0$, we get $f(x^2)=f(x)^2$. Suppose $x,y \ne 0$ are the zeroes of $f$. Since $f(x-y)^2+y^2 \ge y^2 > 0$, $x+y$ is also the zero of $f$. Assume that for some $a, b \ne 0$, $f(a)=0$ and $f(b)=b^2$. Then $f(a-b), f(a+b) \ne 0$ else $f((b \pm a) \mp a) = f(b) = 0$. Since $f(x)=x^2$ is a solution for $P(x,y)$, $P(a, b)$ implies $f(a^2)=a^2$ and contradicts the assumption. Therefore, $\boxed{\text{S1 : }f(x)=x^2\text{ }\forall x}$ and $\boxed{\text{S2 : }f(x)=0\text{ }\forall x}$ This is a similar technique used at the end of USAMO 2016 #4 (https://artofproblemsolving.com/community/c5h1231010p6220308)
05.01.2019 02:34
Ohhh, I get it now. Here's my solution. Let $P(x,y)$ be the given assertion. Observe that $P(0,0)\implies f(0)=0$. $P(x,0)$ gives $f(x^2)=f(x)^2$ and $P(0,y)$ implies $f(y)(f(-y)-y^2)=0$. We claim $f$ is even. Indeed, if $f(a)=0$, then we have $0=f(a)^2=f(a^2)=f(-a)^2$, which shows $f(-a)=0=f(a)$. Otherwise, $f(a)\neq 0$, so the equation $f(a)(f(-a)-a^2)=0$ forces $f(-a)=a^2$. Similarly, $f(-a)(f(a)-a^2)=0$ implies $f(a)=a^2$. Thus, $f(a)=a^2=f(-a)$, and we see that $f$ is even in either case. Therefore $P(0,y)$ is equivalent to $f(y)(f(y)-y^2)=0$. So, $f(x)\in \{0,x^2\}$ for every point $x$. Assume there are $a,b\in\mathbb{R}^\times$, such that $f(a)=a^2$ and $f(b)=0$. Since $f$ is even, we have $f(-b)=0$. Note that $P(x,b)$ is $$f(x^2)=(f(x-b)+b^2)f(x+b)$$and $P(x,-b)$ gives $$f(x^2)=(f(x+b)+b^2)f(x-b).$$Therefore $(f(x-b)+b^2)f(x+b)=(f(x+b)+b^2)f(x-b)$, or $f(x+b)=f(x-b)$. Taking $x=a+b$ and $x=a-b$, we obtain $f(a+2b)=f(a)=f(a-2b)$. But $f(a)=a^2>0$, so we must have $f(a+2b)=(a+2b)^2$ and $f(a-2b)=(a-2b)^2$. However, this implies $(a+2b)^2=(a-2b)^2$, which gives $ab=0$, impossible for $a,b\in\mathbb{R}^\times$. Hence, the only solutions are $\boxed{f=x^2}$ and $\boxed{f=0}$.
13.03.2024 15:43
\[f(x^2) + 4y^2f(y) = (f(x-y) + y^2)(f(x+y) + f(y))\]$P(0,0)$ gives $f(0)=2f(0)^2\iff f(0)(f(0)-\frac{1}{2})=0\iff f(0)=0,\frac{1}{2}$ $i)f(0)=0$, $P(x,0)\implies f(x^2)=f(x)^2\geq 0\implies f(x^2)\geq 0$ $P(-x,0)\implies f(x^2)=f(-x)^2$ These two give that $|f(x)|=|f(-x)|$ $P(0,y)\implies 4y^2f(y)=(f(-y)+y^2)(2f(y))=2f(y)f(-y)+2y^2f(y)$ $2y^2f(y)=2f(y)f(-y)\iff f(y)(f(-y)-y^2)=0$ Hence $f(y)=0$ or $f(-y)=y^2$ $\implies f(x)=x^2,-x^2,0$ If there exists $c\neq 0$, $f(c)=c^2$ and $f(-c)=-c^2$ $P(0,c)\implies 4c^2.c^2=(-c^2+c^2)(2c^2)=0\implies c=0$ which gives a contradiction. This gives that $f(c)=-f(-c)\iff f(c)=0$ Also this means that $f(x)=f(-x)$ By replacing $-x$ with $x$, $LHS$ doesn't change so $(f(x-y)+y^2)(f(x+y)+f(y))=(f(x+y)+y^2)(f(x-y)+f(y))$ $f(x-y)f(y)+y^2f(x+y)=f(x+y)f(y)+y^2f(x-y)$ $f(y)(f(x+y)-f(x-y))-y^2(f(x+y)-f(x-y))=0\iff (f(y)-y^2)(f(x+y)-f(x-y))=0$ $f(y)=y^2$ or $f(x+y)=f(x-y)$ If there exists some $a\neq 0, f(x+a)=f(x-a)$ then $x\rightarrow x+a$ gives that $f(x+2a)=f(x)\implies f$ is periodic. Let the period be $T$. $P(0,y)\implies 4y^2f(y)=(f(y)+y^2).2f(y)=2f(y)^2+2y^2f(y)\iff f(y)^2=y^2f(y)$ Replacing $y+T$ with $y$ doesn't change $LHS$ but changes $RHS$. Assume that $T>0$. $\implies y^2f(y)=(y+T)^2f(y+T)=(y+T)^2f(y)=y^2f(y)+2yTf(y)+T^2f(y)\implies f(y)(T+2y)=0$ $T$ must be positive so $y\geq 0 \implies f(y)=0$ Thus $f(x^2)=0$ also $|f(-x^2)|=|f(x^2)|=0$ gives that $\forall x, f(x)=0$ So $T=0$ and this gives that $\boxed{f\equiv 0}$ If there doesn't exist any $a\neq 0, f(x+a)=f(x-a),$ then $f(y)=y^2$ So $\boxed{f(x)=x^2}$ $ii)f(0)=\frac{1}{2}$ $P(0,y)\implies 4y^2f(y)+\frac{1}{2}=2f(y)f(-y)+2y^2f(y)\iff 2f(y)f(-y)=2y^2f(y)+\frac{1}{2}$ $\iff f(y)(f(-y)-y^2)=\frac{1}{4}$ Replacing $-y$ with $y$ gives $f(-y)(f(y)-y^2)=\frac{1}{4}$ So $f(y)\neq 0$ and $f(-y)f(y)-y^2f(-y)=f(-y)f(y)-y^2f(y)\iff f(y)=f(-y)$ $LHS$ stays same if we replace $-x$ with $x$. So $(f(x-y)+y^2)(f(x+y)+f(y))=(f(x+y)+y^2)(f(x-y)+f(y))$ $\iff f(x-y)f(y)+y^2f(x+y)=f(x+y)f(y)+y^2f(x-y)$ $\iff (f(x+y)-f(x-y))(y^2-f(y))=0$ This gives that $f(y)=y^2$ or $f(x+y)=f(x-y)\forall x$. If $f(x+a)=f(x-a)$ for some $a\neq 0$, taking $x=a$ gives $f(2a)=\frac{1}{2}$ $P(0,a)\implies \frac{1}{2}=f(0)=(f(a)+a^2)f(a)=f(a)^2+a^2f(a)=0$ which gives a contradiction. So $f(x)=x^2$ for $x\neq 0$. $P(x,x)\implies 5x^4=f(x^2)+4x^2f(x)=(\frac{1}{2}+x^2)(f(2x)+f(x))=(\frac{1}{2}+x^2)(5x^2)=5x^4+\frac{5}{2}x^2$ and this gives a contradiction again.